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Abstract 

In this paper, we provide certain requirements for several non-linear functional integro-differential 

equations for asymptotic stability.  We use a fixed point theorem of Darbo to demonstrate the 

existence and local asymptotic stability of solutions for a quadratic functional integral problem. Our 

analysis is predicated on the successful creation of appropriate characterizations of measures of 

non-compactness.  The studies are applied to real functions that are characterized as continuous 

and bounded on an unbounded interval in the Banach space.  To illustrate the paper's abstract 

results' natural realizations, an example is provided.  This paper's findings are novel, 

comprehensive, and better than those reported in the literature. 

 

Keywords: non-linear, integro-differential equations, asymptotic stability. 

 

Introduction 

In this paper, we deal with the stability of non-linear quadratic functional integro-differential equation in 

Banach algebras and discuss the existence as well as existence result for extermal solution wide, Lipschitz, 

Caratheodory and monotonic conditions. The main tool used in our considerations is the technique of 

measure of non-compactness and the fixed point theorem of Darbo (Banas, 1980; Bellale, 2015). The 

integral equation in question and has rather general form and contains as particular cases a lot of functional 

equations and non-linear integral equations of Voltera type.  

In this paper the measure of non-compactness used to obtain the existence of solutions of the mentioned 

function at integral equation but also to characterize the solutions in terms of uniform global asymptotic 

attractively. The assumptions imposed on the non-linearities in our main existence theorem admit several 

natural realizations with are illustrated by an example. The result several ones obtained earlier in a lot of 

papers concerning asymptotic stability of solutions of some functional integral equations (Banas, 2003 

and 2007; Dhage, 2002; Burton, 2004 and Bellale, 2015). 

 

1. Notations, Definitions and Auxiliary facts 

At the beginning of this section, we present some basic facts concerning the measures of non compactness 

(Banas, 1980 and 1981; Bellale, 2015) in Banach spaces. 
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Assume that (E, ║║) is an infinite dimensional Banach space with zero element  Denote by 

B̅r ( x) the closed ball centered at x and with radius r. Thus B̅r ( ) is the closed ball centered at origin of 

radius r. If X is a subset of E then the symbols X̅, Conv X̅ stand for the closure and closed convex hull of 

X, respectively. Moreover, we denote by bd  (E) the family of all nonempty and bounded subset of E and 

by rcp (E) its subfamily consisting of all relatively compact subsets of E. The following definition of a 

measure of non-compactness appears (Banas, 1980 and 1981; Bellale, 2015). 

Definition 1.1- A mapping  : bd (E)→ R+ = ) is said to be a measure of non-compactness in E if it 

satisfies the following conditions: 

1° The family  = X  bd ( E)   ( X ) = 0 is nonempty and ker   rcp (E) 

2° X Y  (X )  (Y ) 

3°  ( X ) =  ( X ) 

4°  (ConvX ) = (X ) 

5°  ( X + (1− )Y ) ( X ) + (1− ) (Y ) for 0,1 

6° If ( Xn ) is a sequence of closed sets from bd (E) such that ( ) 1 1 2 n n Xn+1  Xn (n=1,2,....) and if 

lim
n→∞

µ  (Xn) =  0, then the intersection set X = n−1
∞  X n is nonempty. 

The family ker  described in 1° is said to be the kernel of the measure of non-compactness . Observe 

that the intersection set X from 6° is a member of the family ker  . In fact, since µ(X∞)≤   (Xn) for any 

n, we infer that  (X) = 0. This yields that X  ker . This simple observation will be essential in our 

further investigations. Now we state a fixed point theorem of Darbo type which will be used in the sequel 

((Banas, 1980 and 1981; Bellale, 2015). 

 

Theorem 1.1- Let  be a nonempty bounded closed and convex subset of the Banach space E and let F : 

 → be a continuous mapping. Assume that there exists a constant k0,1 such that  (FX 

)  k (X) for any nonempty subset X of  . Then F has a fixed point in the set  

 

Remark 1.1- Let us denote by Fix( F) the set of all fixed points of the operator F which belong to  . It 

can be shown 1 that the set Fix( F) belongs to the family ker  Our further considerations will be placed 

in the Banach space BC(R+ , R) consisting of all real functions X = X (t ) defined continuous and bounded 

on R+. This space is equipped with the standard supremum norm 

║x│= sup│x (t )│:t R+    (1)  

for our purpose we will use the ball measure of non-compactness in E = BC(R+, R) defined by 

        (1.2) 

for all bounded subsets A  

The ball measure of non-compactness is also called Hausdorff measure of non-compactness since it has 

close connections with the Hausdorff metric in the Banach space E. We use a handy formula for ball or 

Hausdorff measure of non-compactness in BC(R ,R) + discussed in Banas (Banas, 1980 and 1981; Bellale, 

2015). To derive this formula, let us fix a nonempty and bounded subset X of the space BC(R ,R) + and a 

positive number T. For xX and   0 denote by ( ) T  x, the modulus of continuity of the function x 

on the interval 0,T  , i.e. 
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Next, let us put 

 
It is known that 

 

for any bounded subset A of BC(R ,R) + (see Banas and Goebel (Banas, 1980 and 1981; Bellale, 2015). 

Now, for a fixed number t R+  let us denote 

X (t ) = x (t ) : x X 

and 

X (t ) = sup x(t ) : x, yX 

Finally, let us consider the function  defined on the family BC(R ,R) + by the formula 

    (1.3) 

It can be shown as in Banas 2 that the function  is a measure of non-compactness in the space BC (R 

,R) + . The kernel ker  of this measure consists nonempty and bounded subsets X of BC(R ,R) + such 

that the function from X are locally equicontinous on R+ and the thickness of the bundle formed by 

functions form X tends to zero at infinity. This particular characteristic of ker  has been utilized in 

establishing the local attractivity of the solutions for quadratic integral equation. In order to introduce 

further concepts used in the paper let us assume that  is a nonempty subset of the space BC(R ,R) + . 

Moreover, let Q be an operator defined on  with values in BC (R ,R) + .  

Consider the operator equation of the form 

    (1.4) 

Definition 1.2- We say that solutions of the equation (1.3) are locally attractive if there exists a ball ( ) 0 

Br x in the space BC(R ,R) + such that for arbitrary solutions x = x(t ) and y = y (t ) of equation (2.3) 

belonging to ( ) 0 Br x  we have that 

     (1.5) 

In the case when the limit (1.4) is uniform with respect to the set ( ) 0 B x  i.e. when for each   0 

there exists T  0 such that 

    (1.6) 

for all ( ) 0 x, yB x  being solutions of (1.4) and for t T , we will say that solutions of equation (1.4) 

are uniformly locally attractive (or equivalently, that solutions of (1.4) are asymptotically stable). 

Definition 1.3- A line 1 2 y = m t +m , where 1 m and 2 m are real numbers, is called a attractor for the 

solution x BC(R ,R) +  to the equation (1.1) if ( ) ( ) 1 2 0 t lim x t m t m → − +  = . In this case the 
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solution x to the equation (1.1) is also called to be asymptotic to the line 1 2 y = m t +m and the line is an 

asymptote for the solution x on R+ . Now we introduce the following definition useful in the sequel. 

 

Definition 1.4- The solutions of the equation (1.1) are said to be locally asymptotically attractive if there 

exists a ( ) 0 x BC R ,R +  and an r  0 such that for any two solutions x = x(t ) and y = y (t ) of the 

equation (1.1) belonging to ( ) Br x0  the condition (1.3) is satisfied and there is a line which is a 

common attractor to them on R+ . In the case when condition (1.3) is satisfied uniformly with respect to 

the set ( ) 0 Br x  , that is if for every   0 there exists T  0 such that the inequality (2.4) is satisfied 

for t T and for all ( ) 0 x, yBr x  being solution of (2.1) having a line as a common attractor we will 

say that solutions of the equation (2.1) are uniformly locally asymptotically attractive on R+. 

Remark 1.2- Not that two solutions x and y of the equation (2.1) existing on R+ are called 

asymptotically attractive if the condition (2.3) is satisfied and there is a line as a common attractor on R+ . 

Therefore, locally asymptotically attractive solutions are asymptotically attractive, but the converse may 

not be true. Similarly uniformly locally asymptotically attractive solutions are asymptotically attractive, 

but the converse may not be true. A asymptotically attractive solution for the operator equation (2.1) 

existing on R+ is also called asymptotically stable on R+. 

Let us mention that the concept of attractive of solutions was introduced in Hu and Yan and Banas and 

Rzepka, while the concept of asymptotic attractively is introduced in (Banas, 1980 and 1981; Bellale, 2015 

and Dhage, 2007). 

 

2. Statement of the problem integral Equation 

In this section we will discuss the following non-linear function integro differential equation (in short 

FBVP) 

       (2.1) 

for all t R+  where 

 

By a solution of FBVP (3.1) we mean a functions x AC (R ,R) +  ' that satisfies the equation 

(3.1), where AC'(R+,R) is the space of all continuous real valued functions on R+ . 

(B1) 1 B The function ,,:R+→R+ are continuous and limt→(t)= . 

(B2) The function f:R+R→R is continuous and there exists a bounded function f:R+→R with bound L such 

that 

 

for tR+ and for x, yR. 

(B3) The function f:R+→R+ defined by F(t)=  is bounded on R+ with F0=supt0F(t). 

(D1) The function q:R→R continuous and limt→q(t)=0. 

(D2) The function g:R+R+R→R is continuous and there exist continuous function p, q:R+→R+ such that 
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For  ts  R+. We assume that 

 

The main result of this paper. 

Theorem 2.1- Assume that the hypotheses (B1) through (B3) and D1 and D2 hold. 

Further more, if LN21, where N2  

Proof- Set D=AC (R+, R) consider the operator Q defined on the Banach space P by the formula 

    (2.2) 

For t  R. From our assumptions, for any function x  P, Q x is a real valued continuous function on R+. 

Since the function 

    (2.3) 

Is continuous and from the hypothesis (H2). The number N2=supt0 v (t) exists. Define a closed ball Br 

(0)in P centered at the origin O of the radius equal to  

Let  x  Br (0  be arbitrarily fixed. Then by hypotheses (A1)−(B2) and (H1), (H2)we obtain. 

 
For all t  R+. Taking the supermom over t, we obtain the result. 

    (2.4) 

For all  x  B r(0). 

Now Q defines a mapping Q:Br (0) → Br(0).  To prove the operator Q is continuous on the ball Br(0). Let 

us fix arbitrarily   0 and take x,yBr(0)such that x−y .Then by hypotheses (A1)−(A2) and 
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(B1)−(B2)we get: 

 

 

                    

Hence from hypothesis (D), there exists T  0 such that v ( t ) = 
 

for t  T . Thus for  tT from the 

estimate (3.3) we get     (2.5) 

Further, let us assume that t  0, T. Then evaluating similarly as above we get : 
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r 

 

 

 

 

 

 

 

 

 

 

(2.6) 

On the view of continuity of  we have that  T  . Moreover, from the uniform continuity of the function 

g(t ,x, x') on the set0,T0,T−r,r we derive that T(g,)→0 as  → 0. Now using the in equalities 

(2.5), (2.6) and the above established facts we conclude that the operator  maps continuously the ball Br 

(0) into itself. Further forn on- empty subset X of the ball Br (0). Let for arbitrarily T  0 and   0 . Let 

us choose x  X and t1, t2 0, T with t2 − t1  . Without loss of generality we may assume that t1  t2. 

Then, taking into account our assumptions, we get 
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(2.8) 

Again 

(2.9) 

Now combining (2.8) and (2.9) we get, 
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r 2 0 

(2.10) 

Where we have denoted 

 
From the above estimate we derive the following inequality 

(2.11) 

Observe that  T ( f , ) → 0 and  T ( g, ) → 0 as  → 0, which is a simple consequence of the uniform 

continuity of the function f & g on the sets0,T−r, rand 0,T0,,T−r,r, respectively. Moreover, 

from the uniform continuity of h, , von 0, T , it follows that  T (h, ) → 0, T (, ) → 0, T (v, ) → 0 

as  → 0. Thus using the established facts with the estimate, (3.10) we get  

Consequently are obtain       (2.12) 

Similarly for any x  X , one has 
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For all t R+. 

Therefore, from the above in equality, it follows that 

 

Supremum overt, 

 

Hence, 

 

Where LN2  1. This shows that Q is a set-contraction on Br (0) with the contraction constant K = L N2. 

We apply theorem (1.1) to the operator Q x = x and deduce that the operator Q has a fixed point x in the 

ball Br (0). As x is a solution of the functional integro-differential equation (3.1). Moreover, taking into 

account that the image of the space X under the operator Q is contained in the ball Br (0) we infer that the 

set Fix (Q) of all fixed points of Q is contained in Br (0). Obviously the set Fix (Q) contains all solutions 

of the equation (2.1). On the other hand, from Remark 1.3 we conclude that the set Fix (Q) belongs to the 

family ker . Now taking into account of the description of sets belonging to ker  (given in section 2) we 

deduce that all solutions of the equation (2.1) are uniformly locally asymptotically stable on R+ and the 

common attract or is the line x (t) = 0. This completes the proof. 
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3. An Example- 

Consider the non-linear QFIE of the form 

   (3.1) 

for all tR. Comparing QFIE (3.1) with (2.1), we obtain 

 

for all t R+  and 

 

for all t ,s R & x R +   we shall show that all the above function satisfy the condition of theorem 2.1. 

Clearly, the function  , , are continuous and map the half real line R+ into it self with 

 is continuous and 

 

Further on, the function f is continuous on R + R and satisfies (A) with L=
1
.T see this, let x, yR then 

 

Finally, the function g is continuous on R +  R +  R and 

 
for all t,s R+ and x  R. Moreover 

 
We apply theorem 2.1 to yield that the QFIE (2.1) has a solution and all solution are uniformly locally 

asymptotically stable on R+. 
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