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Abstract

The n —Colour partition, introduced by Agarwal and Andrews [1] are extended to (n + t)—color
partitions where the parts of size n can come in (n + t), t > 0, different colors. In the study of partition
theory, the g —series plays an important role. The g —series are integral part of partition identities and
hence for deep combinatorial study of analytic partition identities, it is important to know the
combinatorial counterpart of q —series first.

In this paper, the combinatorial counterpart of some analytic g —series has been given in the light
of Colour Partitions

Keywords: g —series, n —Colour partition, (n + t)—color partitions, Generating functions, Partition
functions, Combinatorial interpretations, etc.

1. Introduction:

Throughout this paper, we assume |g|<land, as customary, we define

(@;9)o =1
(a; Q) = [TFZ5(1 — ag®), for n>1
and,
(@ @)oo = [Trea(1 — ag™).
It follows that ~ (a; q), = %

The multiple g-shifted factorial is defined by

(a1, Az, e O P = (15 Pn(A2; D - (s D
a1,z o O Qoo = (A1 Do (A2, Qo - (Ams P oo
Definition 1:An n- colour partition (also called a partition with n copies of n) of a positive integer u is a
partition in which a part of size n, (n = 0) can come in n different colours denoted by the subscripts: n,,
n,, ns, ....., N, and the parts satisfy the order:

11<21<22<31<32<33<4'1<42<4'3<44_<51<"'........

For example, the six n colour partitions of 3 are:
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3, 35, 33, 21+ 1y, 2501y, 1,4+1,41,

The concept of (n + t)- colour partitions or “(n + t) copies of n”, t > 0 is an extended work of n-
colour partition.

Definition 2: A partition with “(n + t) copies of n”, t > 0, is a partition in which a part of size n,n >
0, can come in n + t different colours denoted by subscripts ny, n,, ns, ....., n,4¢. The parts in an (n +
t)- colour partition can be arranged lexicographically as:

1,<1,<13<2,<2,<2,<3;,<3,<33< " o
Note that zero appears as a part if t > 1 and also zeros are not allowed to repeat in any partition.
For example, there are twenty (n + 2)- colour partitions of 2 as follows:

2, 2,0, 1,1, 131, 1,1,0,

2, 2,0, 1,1; 1314 1,1,0,

25 250, 131, 1,1,0, 151,0,

2, 2,0, 1,1, 1,1,0, 13150,

If m;, n;, m = n are any two parts of an n colour partition, then their weighted difference is defined by
m —n — i — j and is denoted by ((m; — n;)).

Since the (n + t)- colour partitions are only the extensions of n- colour partitions, so the weighted
difference among any two parts m;, n;, in an (n + t)- colour partitions is same as defined n- colour
partitions.

If P(u)denote the number of n-colour partitions of y then the generating function F(q) for P(u) is
given by,

1

F(q) =2Xy=o P(W)q" =1ln=1 PP
(1.1)

Using the notion of n-colour partition, Agarwal [4] obtained the combinatorial interpretation of the
following generalised basic g —series

n(1+

(k+3)(n—1))
2

Tyio Bu(wq =

(@Dn(T:9%)n (12)

where (q; ), = [TF=1(1 — ¢®) and (q; @) = [1r21(1 — ¢*)for |g|<1, as follows:
Theorem 1.1: For k > —3, B, () represents the number of n-colour partitions of u such that each pair
of parts m;, n; satisfies ((m; — n;)) > k.

For k = 0,—1,—2, Theorem 1.1, in view of the identities viz,

n(3n-1)/2 4 6 ,10.,10
q _ @%4°a""q (1.3)

Lin=o (@GO (T:aD)n (@:9)o0
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2
0 q" (a%.49%.9*%9* ) o
> = 14
Lin=o (@D (@9 (@D (1.4)
o  qrtD/2 (D (@%3%a37:4 )0
> = 15
Zin=o @GDn(@9)n @D (—0-9%0)w (1.5)

from [6, Eqgn. (46), (61)] and [7, Egn. (3.1)] reduces to the following Theorems (1.2), (1.3) and (1.4).

Theorem (1.2): The number of n —colour partitions of u such that each pair of parts m;, n;, m; = n;
satisfies the weighted difference ((m; — n;)) > 0 is equal to the number of ordinary partitions of u into
parts #0,%+4 (mod 10).

Theorem (1.3): The number of n —colour partitions of u such that each pair of parts m;, n;, m; = n;
satisfies the weighted difference ((m; —n;)) > 0 is equal to the number of ordinary partitions of x into
parts 0,16 (mod 14).

Theorem (1.4): The number of n —colour partitions of u such that each pair of parts m;, n;, m; = n;
satisfies the weighted difference ((m; —n;)) > 0 is equal Xj,_, C(u — k)D(k), where C(u) denote the

number of partitions of u into distinct parts = +3 (mod 7) and D (u) denote the number of partitions of
u into distinct parts = +4 (mod 14).

Recently, A.K. Agarwal and M. Rana [8], obtains the n —colour partition theoretic interpretation of a
generalised g —series as follows:

Theorem 1.5: For a given positive integer k, let G, (1) represent the n —colour partitions of u into parts
greater than or equal to k such that first copy(resp. second copy) of the odd parts (resp. even parts) and
the second copy (resp. first copy) of the even parts (resp. odd parts) appear if k is odd (resp. even). The
weighted difference between any two parts is nonnegative and even. Then

n(n+k-1)

- _ 4:9H)nq
Zyzo Gk(:u)qﬂ - (4%9))n

The Theorem 1.5 facilitates to give the n —colour combinatorial interpretations of the famous analytic

versions of Gollnitz-Gordon identities as listed in [6, 1(36), 1(34)] and [9, Cor. 2.7, p.21 with g = g* and
a = —2] for the sum sides.

2. Main Results:

In this section, we give the combinatorial interpretations of some g — Series with the help of (n +t) —
colour partitions:

Theorem 2.1: If P, (i) denote the number of partitions of u with n copies of n into parts greater than or
equal to 2 such that if m; is the least or only part in the partition then m —i = 2 (mod 4) and the
weighted difference between consecutive parts is non-negative and = 0 (mod 4). Then the generating
function of P;(w) is given by

2n?

o 00 q
Y=o Pi(1) ¢*=X0=0 G

Example 2.1: For u =8, there are three partitions enumerated by P; (8) are:
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8,,8, and 5;3;

Proof of Theorem 2.1: Let P; (u, m) denote the number of partitions enumerated by P; (u)into exactly
m parts.We split the partitions enumerated by P; (1, m) into the following three classes:

0] those that do not contain k;_, as a part.
(i) those that contain 2, as a part.
(i) those that contain k;_,, (k > 2) as a part.

We now transform the partitions in class (i) by subtracting 4 from each part ignoring the subscripts, it
will not disturb the inequalities between the parts and so the transformed partition will be of the type
enumerated by P; (m, u — 4m).

Next, we transform the partitions in class (ii) by deleting the part 2;and then subtracting 4 from all the
remaining parts ignoring the subscripts. The transformed partition will be of the type enumerated by
Pi(m—1,u—4m+ 2).

Finally, we transform the partitions in class (iii) by replacing kj_, by (k + 1)_3) and then subtracting
2 from all the remaining parts. This will produce a partition of u — 2m +1 into m parts. It is important
to note that, by this transformation we will get only the partitions of u — 2m + 1 into m parts which
contain a part of the form kj_, . Therefore the actual number of partitions which belongs to class (iii) is
P(mu—2m+1)—P;(mu—6m+1), where P;(m,u—6m+ 1) is the number of partitions of
u — 2m + 1into m parts which are free from parts like kj or ko).

The above transformations are reversible and hence establish bisection between the partitions
enumerated by A; (m, y) and those enumerated by

P(mu—4m)+ P (m—-1Lu—4m+2) +P,(mu—2m+1)—-P,(mu—6m+1)
This leads to the recurrence relation

P(muw) =P (mu—4m)+P(m—-—Lu—4m+2)+ P,(mu—2m+1) - P,(mu—6m+1)
(2.1)

Let

91(z @) = Xy=o Xm=0 PL(m,¥)z™q"
(2.2)

Substituting P; (m, y) from (2.1) into (2.2), we get,

91(z;q) = 9:(2q* q) + zq* 91(2zq* 9)*+q"* 91(24%; @) — 47 91(2q%; q)
(2.3)

Consider

91(z; @) = Xn-o an(q)z" (2.4)

Now, using (2.4) in (2.3) and then comparing the coefficients of z" , we get
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4an-2 2n—-1

an ()= q*"an (@) + ¢ ?ay_1(@) + ¢*" (@)% an(q) (2.5)

Hence,

4n-2
q

an(q): (1_q4n)(1_q2n_1) an—l(Q) (26)

Iterating (2.6) n —times and noting that a,(q) = 1, we get,

2n?

q

(D = G 2.7)
Putting the value of a,,(q) in (2.4), we get
91z q) = Yo an(q)z"
. _ V' qznz n
gl (Z' q) - Zn=0 (q4;q4)n(CI:q2)n 4
. oo q2n2
91(1;4) = Ln=o (@490 (@:9%)n
Now, since
Yy=oPi(Wq" = X—oZm=0 Pr(m, 1)) q"
=9:(1;q)
— 00 q2n2 2 8
- Zn=0 (q4iq4)n(CI;q2)n ( ' )

This completes the proof.

Theorem 2.2. let P,(u) denote the number of partitions of u with “n copies of n" into parts greater
than or equal to 3 such that if m; is the least or the only part in the partition then m — i =2(mod4) and
weighted difference between consecutive parts is non-negative and = 0(mod4)

Then the generating function of P,(u) is given by

2n2+2n

00 —\"© q
ZTL:O PZ (‘Ll) qH_ZTL:O (q4;q4)n(q;q2)n

Proof: let P,(m, u) denote the number of partitions of u enumerated by P, () into m parts. We split the
partitions enumerated

by P,(m, i) into three classes:

(i) those that do not contain k;—2 as a part,

(i) those that contain 3 as a part,

(iii) those that contain kj_,(k > 3) as a part.

We now transform the partitions into class (i) by subtracting 4 from each part ignoring the subscripts, it
will not disturb the inequalities between the parts and transformed partition will be of the type
enumerated by P,(m, u — 4m). Next, transform the partitions in class (ii) by deleting the least part 3, and
then subtracting 2 from all the remaining parts ignoring the subscripts. The transformed partition will be
of the type enumerated by P,(m — 1,u — 2m — 1). Finally, we transform the partitions in class (iii) by
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replacing the part k,_, by (k + 1),_3 and then subtracting 2 from all the parts. This will produce the
partitions of (u— 2m + 1) into m parts. Note here that, by this transformation we will get only those
partitions of (u— 2m + 1) into m parts which contain a part of the form k,,_,.

Therefore, the actual number of partitions which belong to class (iii) is P,(m,u — 2m + 1)—P,(m,u —
6m + 1) where P,(m,u — 6m + 1) is the number of partitions of u —2m + 1 into m parts which are
free from parts like Kj,_,.
The above transformations are clearly reversible and bijection between the partitions enumerated by
P,(m,u) and those enumerated by P,(m,u —4m) +P,(m—1,u—2m—1) +P,(m—1,u—2m+1)
—P,(m,u —6m+1)
This leads to the recurrence relation
Py(m,u)=P,(m,u — 4m) +P,(m — 1,u —2m —1)+P,(m - 1,u —2m+1)

—P,(mu—6m+1) (2.9)
Now let,
92(2;q) = Xp=0 Zm=0 P2 (m, )z q" (2.10)

Substituting P,(m, w) from (2.9) into (2.10), we get,
92(z; @) = g2(2q* @) + zq° 9,(2q%; Q)+qa7 " 9.(24%; @) — 47" 9.(29% q) (2.11)
Consider

92(z;q) = Y=o Pn(@)2" (2.12)

Now, using (2.12) in (2.11) and then comparing the coefficients of z" , we get

Bn(@)=q*" (@) + ¢*™ ' Br_1(@) + ¢ (@) — ¢°" 1B (a)
Henca

Bn(@)= o B_1(q) (2.13)

(1-g*")(1—q2"—1)
Iterating (2.13) n —times and noting that S,(gq) = 1, we get,

n2+2n

_ q
Pn(@) = oo @ (2.14)

Putting the value of a,,(q) in (2.12), we get

92(z;q) = Y=o Bn(@)Z"

2
n“+2n
q

. — Y™ n
92 (Z' CI) Zn=0 (@%9%)n(4;:9%)n Z

2
nc+2n
q

1q) =Y —t——
92(1;q) Z"‘0(q“:tr*)n(q.'qz)n
Now,

Z;ozo P,()q* :fozo(z;?l:o Py(m, 1))q"
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=Y m=0P2(m, wq*
=92(1;9)

n2+2n

— o0 q
= Ln=o @*a(@:4%)n
This completes the proof.
Theorem 2.3. let P;(u) denote the number of partitions of u with “n copies of n" into parts greater
than or equal to 3 such that if m; is the least or the only part in the partition then m =i(mod4) and
weighted difference between consecutive parts is non-negative and = 0(mod4)
Then the generating function of P;(u) is given by

2

%) —\"©0 q"
Ln=o P3() 4"=2n=0 iy oo (2.15)

Proof: let P;(m, u) denote the number of partitions of u enumerated by P;(u) into m parts. We split the
partitions enumerated

by P;(m, i) into three classes:

(i) those that do not contain kj, as a part,

(i) those that contain 1, as a part,

(iii) those that contain kj, (k > 2) as a part.

We now transform the partitions into class (i) by subtracting 4 from each part ignoring the subscripts, it
will not disturb the inequalities between the parts and transformed partition will be of the type
enumerated by P;(m, u —4m).

Next, transform the partitions in class (ii) by deleting the least part 1, and then subtracting 2 from all the
remaining parts ignoring the subscripts. The transformed partition will be of the type enumerated by
Ps(m—1,u—2m+1).

Finally, we transform the partitions in class (iii) by replacing the part k, by (k + 1),_, and then
subtracting 2 from all the parts. This will produce the partitions of (u— 2m + 1) into m parts. Note here
that, by this transformation we will get only those partitions of (u— 2m + 1) into m parts which contain a
part of the form k.

Therefore, the actual number of partitions which belong to class (iii) is Ps(m,u — 2m + 1)—P;(m,u —
6m + 1) where P;(m,u — 6m + 1). is the number of partitions of u —2m + 1 into m parts which are
free from parts like K;_,.The above transformations are clearly reversible and bijection between the
partitions enumerated by P;(m,u) and those enumerated by P;(m,u —4m) +P;(m —1,u —2m+ 1)
+P;(m,u —2m+ 1) —Ps(m,u — 6m + 1)
This leads to the recurrence relation
P;(m,u)=P;(m,u — 4m) +P3(m — 1, u — 2m + 1) +P;(m,u — 2m + 1)

—P;(m,u—6m+1) (2.16)
Now let,
93(2;9) = Xyzo Xm=0 P3(m, 1)z q" (2.17)

Proceeding as same as in proof of Theorem 2.2, we get the following g—functional equation

93(z; 9) = 93(zq*; @) + zq 93(2zq% Q)+q~ ' 93(29% q) — " 93(29%; @) (2.18)
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Consider

93(z; @) = Y=o Ya(@Z" (2.19)

Now, since g5(0; q) = 1, using (2.19) in (2.18) and then comparing the coefficients of z™ , we get

2n—-1

Ya(@D= "V (@) + %" n-1(@) + ¢*" V(@ =" v (@)

Hence,

2n—-1
Yl D)= Gy Yn-1(@) (2.20)

Iterating (2.20) n —times and noting that y,(q) = 1, we get,

qn

@5aHn(@:9P)n (221)

(@) =
Putting the value of y,,(q)= in (2.10), we get

93(z;q) = Xp=oYn(@)Z"

( ) Zoo qn2+2n n
Z, = . Z
93'%: 4 =0 (g4:4%)n(a:9%)n
qn2+2n

95(1,4) = Zn=0 iy

Now,
Y=o Ps(1)q* =X = 0(Xm=0 P3(m, 1)) q*

:fo,m=o Py(m, ) q*
=93(L;q)

n2

— oo q
- Zn=0 @*%9)n(@:0%)n
This completes the proof.
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