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Abstract 

The 𝑛 −Colour partition, introduced by Agarwal and Andrews [1] are extended to (n + t)–color 

partitions where the parts of size n can come in (n + t), t ≥ 0, different colors. In the study of partition 

theory, the 𝑞 −series plays an important role. The 𝑞 −series are integral part of partition identities and 

hence for deep combinatorial study of analytic partition identities, it is important to know the 

combinatorial counterpart of  𝑞 −series first.  

In this paper, the combinatorial counterpart of some analytic 𝑞 −series has been given in the light 

of Colour Partitions 

Keywords: 𝑞 −series, 𝑛 −Colour partition, (n + t)–color partitions, Generating functions, Partition 

functions, Combinatorial interpretations, etc. 

1. Introduction:  

Throughout this paper, we assume |q|<1and, as customary, we define  

(𝑎; 𝑞)0 = 1 

                                                       (𝑎; 𝑞)𝑛 = ∏ (1 − 𝑎𝑞𝑘)𝑛−1
𝑘=0 , for n≥1 

                                              and, 

         (𝑎; 𝑞)∞ = ∏ (1 − 𝑎𝑞𝑘)∞
𝑘=1 .       

It follows that      (𝑎; 𝑞)𝑛 =
(𝑎;𝑞)∞

(𝑎𝑞𝑛;𝑞)∞
 

The multiple q-shifted factorial is defined by  

(𝑎1, 𝑎2, … . . 𝑎𝑚; 𝑞)𝑛 = (𝑎1; 𝑞)𝑛(𝑎2; 𝑞)𝑛 … . (𝑎𝑚; 𝑞)𝑛 

(𝑎1, 𝑎2, … . . 𝑎𝑚; 𝑞)∞ = (𝑎1; 𝑞)∞(𝑎2; 𝑞)∞ … . (𝑎𝑚; 𝑞)∞ 

Definition 1:An 𝑛- colour partition (also called a partition with 𝑛 copies of 𝑛) of a positive integer 𝜇 is a 

partition in which a part of size 𝑛, (𝑛 ≥ 0) can come in 𝑛 different colours denoted by the subscripts: 𝑛1, 

𝑛2, 𝑛3, ....., 𝑛𝑛 and the parts satisfy the order: 

11 < 21 < 22 < 31 < 32 < 33 < 41 < 42 < 43 < 44 < 51 < ⋯ … … .. 

For example, the six 𝑛 colour partitions of 3 are: 
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31,   32,   33,   21 + 11,   22+11,   11+11+11 

The concept of (𝑛 + 𝑡)- colour partitions or “(𝑛 + 𝑡) copies of  𝑛”, 𝑡 ≥ 0 is an extended work of  𝑛- 

colour partition.  

Definition 2: A partition with “(𝑛 + 𝑡) copies of  𝑛”, 𝑡 ≥ 0, is a partition in which a part of size 𝑛, 𝑛 ≥

0, can come in 𝑛 + 𝑡 different colours denoted by subscripts 𝑛1, 𝑛2, 𝑛3, ....., 𝑛𝑛+𝑡. The parts in an (𝑛 +

𝑡)- colour partition can be arranged lexicographically as: 

11 < 12 < 13 < 21 < 22 < 23 < 31 < 32 < 33 < ⋯ … … .. 

Note that zero appears as a part if 𝑡 ≥ 1 and also zeros are not allowed to repeat in any partition. 

For example, there are twenty (𝑛 + 2)- colour partitions of 2 as follows: 

21 2102  1111  1312         131102 

22 2202  1211  1313         121202 

23 2302  1311  111102     131202 

24 2402  1212  121102     131302 

If 𝑚𝑖, 𝑛𝑗 , 𝑚 ≥ 𝑛 are any two parts of an 𝑛 colour partition, then their weighted difference is defined by 

𝑚 − 𝑛 − 𝑖 − 𝑗 and is denoted by ((𝑚𝑖 − 𝑛𝑗)). 

Since the (𝑛 + 𝑡)- colour partitions are only the extensions of 𝑛- colour partitions, so the weighted 

difference among any two parts 𝑚𝑖, 𝑛𝑗 , in an (𝑛 + 𝑡)- colour partitions is same as defined 𝑛- colour 

partitions. 

If 𝑃(𝜇)denote the number of 𝑛-colour partitions of 𝛾 then the generating function 𝐹(𝑞) for  𝑃(𝜇) is 

given by,  

                                     𝐹(𝑞) =∑ 𝑃(𝜇)𝑞𝜇∞
𝛾=0   = ∏

1

(1−𝑞𝑛)𝑛
∞
𝑛=1                                                                  

(1.1) 

Using the notion of  𝑛-colour partition, Agarwal [4] obtained the combinatorial interpretation of the 

following generalised basic 𝑞 −series 

∑ 𝐵𝑘(𝜇)𝑞𝜇∞
𝛾=0  = 

𝑞
𝑛(1+

(𝑘+3)(𝑛−1)
2

)

(𝑞;𝑞)𝑛(𝑞;𝑞2)𝑛
                                                                        (1.2) 

where  (𝑞; 𝑞)𝑛 = ∏ (1 − 𝑞𝑘)𝑛
𝑘=1  and (𝑞; 𝑞)∞ = ∏ (1 − 𝑞𝑘)∞

𝑘=1 for |q|<1, as follows: 

Theorem 1.1: For 𝑘 ≥ −3, 𝐵𝑘(𝜇) represents the number of 𝑛-colour partitions of 𝜇 such that each pair 

of parts 𝑚𝑖, 𝑛𝑗  satisfies ((𝑚𝑖 − 𝑛𝑗)) > 𝑘. 

For 𝑘 = 0, −1, −2, Theorem 1.1, in view of the identities viz, 

    ∑
𝑞𝑛(3𝑛−1)/2

(𝑞;𝑞)𝑛(𝑞;𝑞2)𝑛
=

(𝑞4,𝑞6,𝑞10;𝑞10)∞

(𝑞;𝑞)∞

∞
𝑛=0                                                                  (1.3) 
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                                     ∑
𝑞𝑛2

(𝑞;𝑞)𝑛(𝑞;𝑞2)𝑛
=

(𝑞6,𝑞8,𝑞14;𝑞14)∞

(𝑞;𝑞)∞

∞
𝑛=0                                                                     (1.4) 

                                     ∑
𝑞𝑛(𝑛+1)/2

(𝑞;𝑞)𝑛(𝑞;𝑞2)𝑛
=

(−𝑞;𝑞)∞

(𝑞;𝑞)∞

(𝑞2,𝑞5,𝑞7;𝑞7)∞

(−𝑞,−𝑞6;𝑞7)∞

∞
𝑛=0                                                            (1.5) 

from [6, Eqn. (46), (61)] and [7, Eqn. (3.1)] reduces to the following Theorems (1.2), (1.3) and (1.4). 

Theorem (1.2): The number of 𝑛 −colour partitions of 𝜇 such that each pair of parts 𝑚𝑖, 𝑛𝑗 , 𝑚𝑖 ≥ 𝑛𝑗 

satisfies the weighted difference ((𝑚𝑖 − 𝑛𝑗)) > 0 is equal to the number of ordinary partitions of 𝜇 into 

parts ≢0,±4 (mod 10). 

Theorem (1.3): The number of 𝑛 −colour partitions of 𝜇 such that each pair of parts 𝑚𝑖, 𝑛𝑗 , 𝑚𝑖 ≥ 𝑛𝑗 

satisfies the weighted difference ((𝑚𝑖 − 𝑛𝑗)) > 0 is equal to the number of ordinary partitions of 𝜇 into 

parts ≢0,±6 (mod 14). 

Theorem (1.4): The number of 𝑛 −colour partitions of 𝜇 such that each pair of parts 𝑚𝑖, 𝑛𝑗 , 𝑚𝑖 ≥ 𝑛𝑗 

satisfies the weighted difference ((𝑚𝑖 − 𝑛𝑗)) > 0 is equal ∑ 𝐶(𝜇 − 𝑘)𝐷(𝑘),
𝜇
𝑘=0  where 𝐶(𝜇) denote the 

number of partitions of 𝜇 into distinct parts ≡ ±3 (mod 7) and 𝐷(𝜇) denote the number of partitions of 

𝜇 into distinct parts ≡ ±4 (mod 14). 

Recently, A.K. Agarwal and M. Rana [8], obtains the 𝑛 −colour partition theoretic interpretation of a 

generalised 𝑞 −series as follows: 

Theorem 1.5: For a given positive integer 𝑘, let 𝐺𝑘(𝜇) represent the 𝑛 −colour partitions of 𝜇 into parts 

greater than or equal to 𝑘 such that first copy(resp. second copy) of the odd parts (resp. even parts) and 

the second copy (resp. first copy) of the even parts (resp. odd parts) appear if 𝑘 is odd (resp. even). The 

weighted difference between any two parts is nonnegative and even. Then 

∑ 𝐺𝑘(𝜇)𝑞𝜇∞
𝛾=0  = 

(−𝑞;𝑞2)𝑛𝑞𝑛(𝑛+𝑘−1)

(𝑞2;𝑞2)𝑛
 

The Theorem 1.5 facilitates to give the 𝑛 −colour combinatorial interpretations of the famous analytic 

versions of Gollnitz-Gordon identities as listed in [6, I(36), I(34)] and [9, Cor. 2.7, p.21 with 𝑞 = 𝑞2 and 

𝑎 = −2] for the sum sides. 

2. Main Results: 

In this section, we give the combinatorial interpretations of some 𝑞 − Series with the help of (𝑛 + 𝑡) − 

colour partitions: 

Theorem 2.1: If 𝑃1(𝜇) denote the number of partitions of 𝜇 with 𝑛 copies of 𝑛 into parts greater than or 

equal to 2 such that if 𝑚𝑖 is the least or only part in the partition then 𝑚 − 𝑖 ≡ 2 (𝑚𝑜𝑑 4) and the 

weighted difference between consecutive parts is non-negative and ≡ 0 (𝑚𝑜𝑑 4). Then the generating 

function of  𝑃1(𝜇) is given by 

∑ 𝑃1(𝜇)∞
𝑛=0 𝑞𝜇=∑

𝑞2𝑛2

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛

∞
𝑛=0  

Example 2.1: For 𝜇 =8, there are three partitions enumerated by 𝑃1(8) are: 
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                                           82, 86  and 5131 

Proof of Theorem 2.1: Let 𝑃1(𝜇, 𝑚) denote the number of partitions enumerated by 𝑃1(𝜇)into exactly 

𝑚 parts.We split the partitions enumerated by 𝑃1(𝜇, 𝑚)  into the following three classes: 

(i) those that do not contain 𝑘𝑘−1  as a part. 

(ii) those that contain 21 as a part. 

(iii) those that contain 𝑘𝑘−2, (𝑘 > 2)  as a part. 

We now transform the partitions in class (i) by subtracting 4 from each part ignoring the subscripts, it 

will not disturb the inequalities between the parts and so the transformed partition will be of the type 

enumerated by 𝑃1(𝑚, 𝜇 − 4𝑚). 

Next, we transform the partitions in class (ii) by deleting the part 21and then subtracting 4 from all the 

remaining parts ignoring the subscripts. The transformed partition will be of the type enumerated by 

𝑃1(𝑚 − 1, 𝜇 − 4𝑚 + 2). 

Finally, we transform the partitions in class (iii) by replacing 𝑘𝑘−2  by (𝑘 + 1)(𝑘−3) and then subtracting 

2 from all the remaining parts. This will produce a partition of  𝜇 − 2𝑚 +1 into 𝑚 parts. It is important 

to note that, by this transformation we will get only the partitions of 𝜇 − 2𝑚 + 1 into 𝑚 parts which 

contain a part of the form 𝑘𝑘−2 . Therefore the actual number of partitions which belongs to class (iii) is 

𝑃1(𝑚, 𝜇 − 2𝑚 + 1) − 𝑃1(𝑚, 𝜇 − 6𝑚 + 1), where 𝑃1(𝑚, 𝜇 − 6𝑚 + 1) is the number of partitions of  

𝜇 − 2𝑚 + 1 into 𝑚 parts which are free from parts like  𝑘𝑘 or 𝑘(𝑘−2). 

The above transformations are reversible and hence establish bisection between the partitions 

enumerated by 𝐴1(𝑚,  𝛾) and those enumerated by   

𝑃1(𝑚, 𝜇 − 4𝑚) + 𝑃1(𝑚 − 1, 𝜇 − 4𝑚 + 2)  + 𝑃1(𝑚, 𝜇 − 2𝑚 + 1) − 𝑃1(𝑚, 𝜇 − 6𝑚 + 1) 

This leads to the recurrence relation 

𝑃1(𝑚, 𝜇) = 𝑃1(𝑚, 𝜇 − 4𝑚) + 𝑃1(𝑚 − 1, 𝜇 − 4𝑚 + 2) + 𝑃1(𝑚, 𝜇 − 2𝑚 + 1) − 𝑃1(𝑚, 𝜇 − 6𝑚 + 1)  

                                                                            (2.1) 

Let  

                 𝑔1(𝑧; 𝑞) = ∑ ∑ 𝑃1(𝑚, 𝛾)𝑧𝑚𝑞𝛾∞
𝑚=0

∞
𝛾=0                                                                                  

(2.2) 

Substituting 𝑃1(𝑚,  𝛾) from (2.1) into (2.2), we get, 

𝑔1(𝑧; 𝑞) = 𝑔1(𝑧𝑞4; 𝑞) + 𝑧𝑞2 𝑔1(𝑧𝑞4; 𝑞)+𝑞−1𝑔1(𝑧𝑞2; 𝑞) − 𝑞−1𝑔1(𝑧𝑞6; 𝑞)                                          

(2.3) 

Consider      

              𝑔1(𝑧; 𝑞) = ∑ 𝛼𝑛(𝑞)𝑧𝑛∞
𝑛=0                                              (2.4) 

Now, using (2.4) in (2.3) and then comparing the coefficients of 𝑧𝑛 , we get 
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𝛼𝑛(𝑞)= 𝑞4𝑛𝛼𝑛(𝑞) + 𝑞4𝑛−2𝛼𝑛−1(𝑞) + 𝑞2𝑛−1𝛼𝑛(𝑞)−𝑞6𝑛−1𝛼𝑛(𝑞)                   (2.5) 

Hence, 

                   𝛼𝑛(𝑞)= 
𝑞4𝑛−2

(1−𝑞4𝑛)(1−𝑞2𝑛−1)
 𝛼𝑛−1(𝑞)                                (2.6) 

Iterating (2.6) 𝑛 −times and noting that  𝛼0(𝑞) = 1, we get, 

                        𝛼𝑛(𝑞) =  
𝑞2𝑛2

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛
                                                                                                 (2.7) 

Putting the value of 𝛼𝑛(𝑞) in (2.4), we get 

              𝑔1(𝑧; 𝑞) = ∑ 𝛼𝑛(𝑞)𝑧𝑛∞
𝑛=0  

                                  𝑔1(𝑧; 𝑞) = ∑
𝑞2𝑛2

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛
. 𝑧𝑛∞

𝑛=0  

                                  𝑔1(1; 𝑞) = ∑
𝑞2𝑛2

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛

∞
𝑛=0  

Now, since 

           ∑ 𝑃1(𝜇)𝑞𝛾∞
𝛾=0  =     ∑ (∑ 𝑃1(𝑚, 𝜇)∞

𝑚=0 )𝑞𝜇∞
𝜇=0   

                                            = 𝑔1(1; 𝑞) 

  = ∑
𝑞2𝑛2

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛

∞
𝑛=0                                                                                    (2.8) 

This completes the proof. 

Theorem 2.2. let 𝑃2(𝜇) denote the number of partitions of  𝜇  with “𝑛 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑛" into parts greater 

than or equal to 3 such that if 𝑚𝑖 is the least or the only part in the partition then  𝑚 − 𝑖 ≡2(mod4) and 

weighted difference between consecutive parts is non-negative and ≡ 0(mod4) 

Then the generating function of  𝑃2(𝜇) is given by 

                                         ∑ 𝑃2(𝜇)∞
𝑛=0 𝑞𝜇=∑

𝑞2𝑛2+2𝑛

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛

∞
𝑛=0   

Proof: let 𝑃2(𝑚, 𝜇) denote the number of partitions of 𝜇 enumerated by 𝑃2(𝜇) into m parts. We split the 

partitions enumerated 

by 𝑃2(𝑚, 𝜇) into three classes: 

(i) those that do not contain 𝑘𝑘−2 as a part, 

(ii) those that contain 31 as a part, 

(iii) those that contain 𝑘𝑘−2(k > 3) as a part. 

We now transform the partitions into class (i) by subtracting 4 from each part ignoring the subscripts, it 

will not disturb the inequalities between the parts and transformed partition will be of the type 

enumerated by 𝑃2(m, 𝜇 − 4m). Next, transform the partitions in class (ii) by deleting the least part 31 and 

then subtracting 2 from all the remaining parts ignoring the subscripts. The transformed partition will be 

of the type enumerated by 𝑃2(𝑚 − 1,𝜇 − 2𝑚 − 1). Finally, we transform the partitions in class (iii) by 
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replacing the part 𝑘𝑘−2  by (𝑘 + 1)𝑘−3 and then subtracting 2 from all the parts. This will produce the 

partitions of (𝜇− 2m + 1) into m parts. Note here that, by this transformation we will get only those 

partitions of (𝜇− 2m + 1) into m parts which contain a part of the form 𝑘𝑘−2. 

Therefore, the actual number of partitions which belong to class (iii) is 𝑃2(𝑚,𝜇 − 2𝑚 + 1)−𝑃2(𝑚,𝜇 −

6𝑚 + 1) where 𝑃2(𝑚,𝜇 − 6𝑚 + 1) is the number of partitions of 𝜇 − 2𝑚 + 1 into m parts which are 

free from parts like 𝐾𝑘−2. 

The above transformations are clearly reversible and bijection between the partitions enumerated by 

𝑃2(𝑚,𝜇) and those enumerated by 𝑃2(𝑚,𝜇 − 4𝑚) +𝑃2(𝑚 − 1,𝜇 − 2𝑚 − 1) +𝑃2(𝑚 − 1,𝜇 − 2𝑚 + 1) 

−𝑃2(𝑚,𝜇 − 6𝑚 + 1) 

This leads to the recurrence relation 

𝑃2(𝑚,𝜇)=𝑃2(𝑚,𝜇 − 4𝑚) +𝑃2(𝑚 − 1,𝜇 − 2𝑚 − 1) +𝑃2(𝑚 − 1,𝜇 − 2𝑚 + 1)  

                                                                           −𝑃2(𝑚,𝜇 − 6𝑚 + 1)                                                  (2.9) 

Now let, 

𝑔2(𝑧; 𝑞) = ∑ ∑ 𝑃2(𝑚, 𝜇)𝑧𝑚𝑞𝜇∞
𝑚=0

∞
𝜇=0                                                                                        (2.10) 

Substituting 𝑃2(𝑚,  𝜇) from (2.9) into (2.10), we get, 

𝑔2(𝑧; 𝑞) = 𝑔2(𝑧𝑞4; 𝑞) + 𝑧𝑞3 𝑔2(𝑧𝑞2; 𝑞)+𝑞−1𝑔2(𝑧𝑞2; 𝑞) − 𝑞−1𝑔2(𝑧𝑞6; 𝑞)                                      (2.11)                        

 

Consider      

              𝑔2(𝑧; 𝑞) = ∑ 𝛽𝑛(𝑞)𝑧𝑛∞
𝑛=0                                               (2.12) 

Now, using (2.12) in (2.11) and then comparing the coefficients of 𝑧𝑛 , we get 

𝛽𝑛(𝑞)= 𝑞4𝑛𝛽𝑛(𝑞) + 𝑞2𝑛+1𝛽𝑛−1(𝑞) + 𝑞2𝑛−1𝛽𝑛(𝑞) − 𝑞6𝑛−1𝛽𝑛(q) 

Hence, 

                   𝛽𝑛(𝑞)= 
𝑞2𝑛+1

(1−𝑞4𝑛)(1−𝑞2𝑛−1)
 𝛽𝑛−1(𝑞)                                (2.13) 

Iterating (2.13) 𝑛 −times and noting that  𝛽0(𝑞) = 1, we get, 

                        𝛽𝑛(𝑞) =  
𝑞𝑛2+2𝑛

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛
                                                                                                 (2.14) 

Putting the value of 𝛼𝑛(𝑞) in (2.12), we get 

              𝑔2(𝑧; 𝑞) = ∑ 𝛽𝑛(𝑞)𝑧𝑛∞
𝑛=0  

                                  𝑔2(𝑧; 𝑞) = ∑
𝑞𝑛2+2𝑛

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛
. 𝑧𝑛∞

𝑛=0  

                                  𝑔2(1; 𝑞) = ∑
𝑞𝑛2+2𝑛

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛

∞
𝑛=0  

Now,  

           ∑ 𝑃2(𝜇)𝑞𝜇∞
𝛾=0  =∑ (∑ 𝑃2(𝑚, 𝜇)∞

𝑚=0 )𝑞𝜇∞
𝜇=0   
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            =∑ 𝑃2(𝑚, 𝜇)∞
𝜇,𝑚=0 𝑞𝜇 

                                             = 𝑔2(1; 𝑞) 

                                             = ∑
𝑞𝑛2+2𝑛

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛

∞
𝑛=0  

This completes the proof. 

Theorem 2.3. let 𝑃3(𝜇) denote the number of partitions of  𝜇  with “𝑛 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑛" into parts greater 

than or equal to 3 such that if 𝑚𝑖 is the least or the only part in the partition then  𝑚 ≡i(mod4) and 

weighted difference between consecutive parts is non-negative and ≡ 0(mod4) 

Then the generating function of  𝑃3(𝜇) is given by 

                                         ∑ 𝑃3(𝜇)∞
𝑛=0 𝑞𝜇=∑

𝑞𝑛2

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛

∞
𝑛=0                                                              (2.15) 

Proof: let 𝑃3(𝑚, 𝜇) denote the number of partitions of 𝜇 enumerated by 𝑃3(𝜇) into m parts. We split the 

partitions enumerated 

by 𝑃3(𝑚, 𝜇) into three classes: 

(i) those that do not contain 𝑘𝑘 as a part, 

(ii) those that contain 11 as a part, 

(iii) those that contain 𝑘𝑘 (k > 2) as a part. 

 

We now transform the partitions into class (i) by subtracting 4 from each part ignoring the subscripts, it 

will not disturb the inequalities between the parts and transformed partition will be of the type 

enumerated by  𝑃3(m, 𝜇 − 4m). 

Next, transform the partitions in class (ii) by deleting the least part 11 and then subtracting 2 from all the 

remaining parts ignoring the subscripts. The transformed partition will be of the type enumerated by 

𝑃3(𝑚 − 1,𝜇 − 2𝑚 + 1).  

Finally, we transform the partitions in class (iii) by replacing the part 𝑘𝑘  by (𝑘 + 1)𝑘−1 and then 

subtracting 2 from all the parts. This will produce the partitions of (𝜇− 2m + 1) into m parts. Note here 

that, by this transformation we will get only those partitions of (𝜇− 2m + 1) into m parts which contain a 

part of the form 𝑘𝑘. 

Therefore, the actual number of partitions which belong to class (iii) is 𝑃3(𝑚,𝜇 − 2𝑚 + 1)−𝑃3(𝑚,𝜇 −

6𝑚 + 1) where 𝑃3(𝑚,𝜇 − 6𝑚 + 1). is the number of partitions of 𝜇 − 2𝑚 + 1 into m parts which are 

free from parts like 𝐾𝑘−2.The above transformations are clearly reversible and bijection between the 

partitions enumerated by 𝑃3(𝑚,𝜇) and those enumerated by 𝑃3(𝑚,𝜇 − 4𝑚) +𝑃3(𝑚 − 1,𝜇 − 2𝑚 + 1) 

+𝑃3(𝑚,𝜇 − 2𝑚 + 1) −𝑃3(𝑚,𝜇 − 6𝑚 + 1) 

This leads to the recurrence relation 

𝑃3(𝑚,𝜇)=𝑃3(𝑚,𝜇 − 4𝑚) +𝑃3(𝑚 − 1,𝜇 − 2𝑚 + 1) +𝑃3(𝑚,𝜇 − 2𝑚 + 1) 

                                                              −𝑃3(𝑚,𝜇 − 6𝑚 + 1)                                                              (2.16) 

Now let, 

𝑔3(𝑧; 𝑞) = ∑ ∑ 𝑃3(𝑚, 𝜇)𝑧𝑚𝑞𝜇∞
𝑚=0

∞
𝜇=0                                                                                        (2.17) 

Proceeding as same as in proof of Theorem 2.2, we get the following q–functional equation 

𝑔3(𝑧; 𝑞) = 𝑔3(𝑧𝑞4; 𝑞) + 𝑧𝑞 𝑔3(𝑧𝑞2; 𝑞)+𝑞−1𝑔3(𝑧𝑞2; 𝑞) − 𝑞−1𝑔3(𝑧𝑞6; 𝑞)                                        (2.18)                
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Consider      

              𝑔3(𝑧; 𝑞) = ∑ 𝛾𝑛(𝑞)𝑧𝑛∞
𝑛=0                                            (2.19) 

Now, since 𝑔3(0; 𝑞) = 1, using (2.19) in (2.18) and then comparing the coefficients of 𝑧𝑛 , we get 

𝛾𝑛(𝑞)= 𝑞4𝑛𝛾𝑛(𝑞) + 𝑞2𝑛−1𝛾𝑛−1(𝑞) + 𝑞2𝑛−1𝛾𝑛(𝑞)−𝑞6𝑛−1𝛾𝑛(𝑞)  

Hence, 

                   𝛾𝑛(𝑞)= 
𝑞2𝑛−1

(1−𝑞4𝑛)(1−𝑞2𝑛−1)
 𝛾𝑛−1(𝑞)                                         (2.20) 

Iterating (2.20) 𝑛 −times and noting that  𝛾0(𝑞) = 1, we get, 

                                           𝛾𝑛(𝑞) =  
𝑞𝑛2

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛
                                                                               (2.21) 

Putting the value of  𝛾𝑛(𝑞)=  in (2.10), we get 

                                  𝑔3(𝑧; 𝑞) = ∑ 𝛾𝑛(𝑞)𝑧𝑛∞
𝑛=0  

                                  𝑔3(𝑧; 𝑞) = ∑
𝑞𝑛2+2𝑛

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛
. 𝑧𝑛∞

𝑛=0  

                                  𝑔3(1; 𝑞) = ∑
𝑞𝑛2+2𝑛

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛

∞
𝑛=0  

Now,  

           ∑ 𝑃3(𝜇)𝑞𝜇∞
𝛾=0  =∑ (∑ 𝑃3(𝑚, 𝜇)∞

𝑚=0 )𝑞𝜇∞
𝜇=0   

            =∑ 𝑃3(𝑚, 𝜇)∞
𝜇,𝑚=0 𝑞𝜇 

                                             = 𝑔3(1; 𝑞) 

                                             = ∑
𝑞𝑛2

(𝑞4;𝑞4)𝑛(𝑞;𝑞2)𝑛

∞
𝑛=0  

This completes the proof. 
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