

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

Combinatorial Counterpart of Some q —Series in the light of Colour Partitions

Shaikh Fokor Uddin Ali Ahmed

Assistant Professor F. A. Ahmed College, Garoimari, Kamrup, Assam, India. **Department Of Mathematics** E-mail: fokoruddin86@gmail.com

Abstract

The n –Colour partition, introduced by Agarwal and Andrews [1] are extended to (n + t)–color partitions where the parts of size n can come in (n + t), $t \ge 0$, different colors. In the study of partition theory, the q -series plays an important role. The q -series are integral part of partition identities and hence for deep combinatorial study of analytic partition identities, it is important to know the combinatorial counterpart of q -series first.

In this paper, the combinatorial counterpart of some analytic q —series has been given in the light of Colour Partitions

Keywords: q -series, n -Colour partition, (n + t)-color partitions, Generating functions, Partition functions, Combinatorial interpretations, etc.

1. Introduction:

Throughout this paper, we assume |q|<1 and, as customary, we define

$$(a;q)_0 = 1$$

 $(a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \text{ for } n \ge 1$

$$(a;q)_{\infty} = \prod_{k=1}^{\infty} (1 - aq^k).$$

It follows that

$$(a;q)_n = \frac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}$$

The multiple q-shifted factorial is defined by

$$(a_1, a_2, \dots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \dots (a_m; q)_n$$

 $(a_1, a_2, \dots, a_m; q)_\infty = (a_1; q)_\infty (a_2; q)_\infty \dots (a_m; q)_\infty$

Definition 1: An n- colour partition (also called a partition with n copies of n) of a positive integer μ is a partition in which a part of size n, $(n \ge 0)$ can come in n different colours denoted by the subscripts: n_1 , n_2, n_3, \dots, n_n and the parts satisfy the order:

$$1_1 < 2_1 < 2_2 < 3_1 < 3_2 < 3_3 < 4_1 < 4_2 < 4_3 < 4_4 < 5_1 < \cdots \dots \dots$$

For example, the six n colour partitions of 3 are:

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

$$3_1$$
, 3_2 , 3_3 , $2_1 + 1_1$, $2_{2+}1_1$, $1_1 + 1_1 + 1_1$

The concept of (n + t)- colour partitions or "(n + t) copies of n", $t \ge 0$ is an extended work of n-colour partition.

Definition 2: A partition with "(n + t) copies of n", $t \ge 0$, is a partition in which a part of size $n, n \ge 0$, can come in n + t different colours denoted by subscripts $n_1, n_2, n_3,, n_{n+t}$. The parts in an (n + t)-colour partition can be arranged lexicographically as:

$$1_1 < 1_2 < 1_3 < 2_1 < 2_2 < 2_3 < 3_1 < 3_2 < 3_3 < \cdots \dots$$

Note that zero appears as a part if $t \ge 1$ and also zeros are not allowed to repeat in any partition.

For example, there are twenty (n + 2)- colour partitions of 2 as follows:

$$2_1$$
 2_10_2 1_11_1 1_31_2 $1_31_10_2$

$$2_2 \qquad 2_2 0_2 \quad 1_2 1_1 \quad 1_3 1_3 \qquad \ \, 1_2 1_2 0_2$$

$$2_3$$
 2_30_2 1_31_1 $1_11_20_2$ $1_31_20_2$

$$2_4$$
 2_40_2 1_21_2 $1_21_10_2$ $1_31_30_2$

If m_i , n_j , $m \ge n$ are any two parts of an n colour partition, then their weighted difference is defined by m - n - i - j and is denoted by $((m_i - n_j))$.

Since the (n + t)- colour partitions are only the extensions of n- colour partitions, so the weighted difference among any two parts m_i , n_j , in an (n + t)- colour partitions is same as defined n- colour partitions.

If $P(\mu)$ denote the number of n-colour partitions of γ then the generating function F(q) for $P(\mu)$ is given by,

$$F(q) = \sum_{\gamma=0}^{\infty} P(\mu) q^{\mu} = \prod_{n=1}^{\infty} \frac{1}{(1-q^n)^n}$$

(1.1)

Using the notion of n-colour partition, Agarwal [4] obtained the combinatorial interpretation of the following generalised basic q —series

$$\sum_{\gamma=0}^{\infty} B_k(\mu) q^{\mu} = \frac{q^{n(1 + \frac{(k+3)(n-1)}{2})}}{(q;q)_n (q;q^2)_n}$$
(1.2)

where $(q;q)_n = \prod_{k=1}^n (1-q^k)$ and $(q;q)_\infty = \prod_{k=1}^\infty (1-q^k)$ for |q|<1, as follows:

Theorem 1.1: For $k \ge -3$, $B_k(\mu)$ represents the number of n-colour partitions of μ such that each pair of parts m_i , n_i satisfies $((m_i - n_i)) > k$.

For k = 0, -1, -2, Theorem 1.1, in view of the identities viz,

$$\sum_{n=0}^{\infty} \frac{q^{n(3n-1)/2}}{(q;q)_n (q;q^2)_n} = \frac{(q^4, q^6, q^{10}; q^{10})_{\infty}}{(q;q)_{\infty}}$$
(1.3)

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(q;q)_n(q;q^2)_n} = \frac{(q^6,q^8,q^{14};q^{14})_{\infty}}{(q;q)_{\infty}}$$
(1.4)

$$\sum_{n=0}^{\infty} \frac{q^{n(n+1)/2}}{(q;q)_n(q;q^2)_n} = \frac{(-q;q)_{\infty}}{(q;q)_{\infty}} \frac{(q^2,q^5,q^7;q^7)_{\infty}}{(-q,-q^6;q^7)_{\infty}}$$
(1.5)

from [6, Eqn. (46), (61)] and [7, Eqn. (3.1)] reduces to the following Theorems (1.2), (1.3) and (1.4).

Theorem (1.2): The number of n -colour partitions of μ such that each pair of parts m_i , n_j , $m_i \ge n_j$ satisfies the weighted difference $((m_i - n_j)) > 0$ is equal to the number of ordinary partitions of μ into parts $\ne 0, \pm 4 \pmod{10}$.

Theorem (1.3): The number of n -colour partitions of μ such that each pair of parts m_i , n_j , $m_i \ge n_j$ satisfies the weighted difference $((m_i - n_j)) > 0$ is equal to the number of ordinary partitions of μ into parts $\ne 0, \pm 6 \pmod{14}$.

Theorem (1.4): The number of n -colour partitions of μ such that each pair of parts m_i , n_j , $m_i \ge n_j$ satisfies the weighted difference $((m_i - n_j)) > 0$ is equal $\sum_{k=0}^{\mu} C(\mu - k)D(k)$, where $C(\mu)$ denote the number of partitions of μ into distinct parts $\equiv \pm 3 \pmod{7}$ and $D(\mu)$ denote the number of partitions of μ into distinct parts $\equiv \pm 4 \pmod{14}$.

Recently, A.K. Agarwal and M. Rana [8], obtains the n –colour partition theoretic interpretation of a generalised q –series as follows:

Theorem 1.5: For a given positive integer k, let $G_k(\mu)$ represent the n -colour partitions of μ into parts greater than or equal to k such that first copy(resp. second copy) of the odd parts (resp. even parts) and the second copy (resp. first copy) of the even parts (resp. odd parts) appear if k is odd (resp. even). The weighted difference between any two parts is nonnegative and even. Then

$$\sum_{\gamma=0}^{\infty} G_k(\mu) q^{\mu} = \frac{(-q;q^2)_n q^{n(n+k-1)}}{(q^2;q^2)_n}$$

The Theorem 1.5 facilitates to give the n –colour combinatorial interpretations of the famous analytic versions of Gollnitz-Gordon identities as listed in [6, I(36), I(34)] and [9, Cor. 2.7, p.21 with $q = q^2$ and a = -2] for the sum sides.

2. Main Results:

In this section, we give the combinatorial interpretations of some q – Series with the help of (n + t) – colour partitions:

Theorem 2.1: If $P_1(\mu)$ denote the number of partitions of μ with n copies of n into parts greater than or equal to 2 such that if m_i is the least or only part in the partition then $m - i \equiv 2 \pmod{4}$ and the weighted difference between consecutive parts is non-negative and $\equiv 0 \pmod{4}$. Then the generating function of $P_1(\mu)$ is given by

$$\sum_{n=0}^{\infty} P_1(\mu) \ q^{\mu} = \sum_{n=0}^{\infty} \frac{q^{2n^2}}{(q^4; q^4)_n (q; q^2)_n}$$

Example 2.1: For $\mu = 8$, there are three partitions enumerated by $P_1(8)$ are:

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

$$8_2, 8_6$$
 and 5_13_1

Proof of Theorem 2.1: Let $P_1(\mu, m)$ denote the number of partitions enumerated by $P_1(\mu)$ into exactly m parts. We split the partitions enumerated by $P_1(\mu, m)$ into the following three classes:

- (i) those that do not contain k_{k-1} as a part.
- (ii) those that contain 2_1 as a part.
- (iii) those that contain k_{k-2} , (k > 2) as a part.

We now transform the partitions in class (i) by subtracting 4 from each part ignoring the subscripts, it will not disturb the inequalities between the parts and so the transformed partition will be of the type enumerated by $P_1(m, \mu - 4m)$.

Next, we transform the partitions in class (ii) by deleting the part 2_1 and then subtracting 4 from all the remaining parts ignoring the subscripts. The transformed partition will be of the type enumerated by $P_1(m-1,\mu-4m+2)$.

Finally, we transform the partitions in class (iii) by replacing k_{k-2} by $(k+1)_{(k-3)}$ and then subtracting 2 from all the remaining parts. This will produce a partition of $\mu-2m+1$ into m parts. It is important to note that, by this transformation we will get only the partitions of $\mu-2m+1$ into m parts which contain a part of the form k_{k-2} . Therefore the actual number of partitions which belongs to class (iii) is $P_1(m,\mu-2m+1)-P_1(m,\mu-6m+1)$, where $P_1(m,\mu-6m+1)$ is the number of partitions of $\mu-2m+1$ into m parts which are free from parts like k_k or $k_{(k-2)}$.

The above transformations are reversible and hence establish bisection between the partitions enumerated by $A_1(m, \gamma)$ and those enumerated by

$$P_1(m, \mu - 4m) + P_1(m - 1, \mu - 4m + 2) + P_1(m, \mu - 2m + 1) - P_1(m, \mu - 6m + 1)$$

This leads to the recurrence relation

$$P_1(m,\mu) = P_1(m,\mu-4m) + P_1(m-1,\mu-4m+2) + P_1(m,\mu-2m+1) - P_1(m,\mu-6m+1)$$
(2.1)

Let

$$g_1(z;q) = \sum_{\gamma=0}^{\infty} \sum_{m=0}^{\infty} P_1(m,\gamma) z^m q^{\gamma}$$

(2.2)

Substituting $P_1(m, \gamma)$ from (2.1) into (2.2), we get,

$$g_1(z;q) = g_1(zq^4;q) + zq^2 g_1(zq^4;q) + q^{-1}g_1(zq^2;q) - q^{-1}g_1(zq^6;q)$$
(2.3)

Consider

$$g_1(z;q) = \sum_{n=0}^{\infty} \alpha_n(q) z^n$$
(2.4)

Now, using (2.4) in (2.3) and then comparing the coefficients of z^n , we get

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

$$\alpha_n(q) = q^{4n}\alpha_n(q) + q^{4n-2}\alpha_{n-1}(q) + q^{2n-1}\alpha_n(q) - q^{6n-1}\alpha_n(q)$$
(2.5)

Hence,

$$\alpha_n(q) = \frac{q^{4n-2}}{(1-q^{4n})(1-q^{2n-1})} \alpha_{n-1}(q)$$
(2.6)

Iterating (2.6) n –times and noting that $\alpha_0(q) = 1$, we get,

$$\alpha_n(q) = \frac{q^{2n^2}}{(q^4;q^4)_n(q;q^2)_n} \tag{2.7}$$

Putting the value of $\alpha_n(q)$ in (2.4), we get

$$\begin{split} g_1(z;q) &= \sum_{n=0}^{\infty} \alpha_n(q) z^n \\ g_1(z;q) &= \sum_{n=0}^{\infty} \frac{q^{2n^2}}{(q^4;q^4)_n(q;q^2)_n} \cdot z^n \\ g_1(1;q) &= \sum_{n=0}^{\infty} \frac{q^{2n^2}}{(q^4;q^4)_n(q;q^2)_n} \end{split}$$

Now, since

$$\sum_{\gamma=0}^{\infty} P_1(\mu) q^{\gamma} = \sum_{\mu=0}^{\infty} (\sum_{m=0}^{\infty} P_1(m,\mu)) q^{\mu}$$

$$= g_1(1;q)$$

$$= \sum_{n=0}^{\infty} \frac{q^{2n^2}}{(q^4;q^4)_n (q;q^2)_n}$$
(2.8)

This completes the proof.

Theorem 2.2. let $P_2(\mu)$ denote the number of partitions of μ with "n copies of n" into parts greater than or equal to 3 such that if m_i is the least or the only part in the partition then $m-i\equiv 2 \pmod{4}$ and weighted difference between consecutive parts is non-negative and $\equiv 0 \pmod{4}$

Then the generating function of $P_2(\mu)$ is given by

$$\sum_{n=0}^{\infty} P_2(\mu) q^{\mu} = \sum_{n=0}^{\infty} \frac{q^{2n^2+2n}}{(q^4;q^4)_n(q;q^2)_n}$$

Proof: let $P_2(m, \mu)$ denote the number of partitions of μ enumerated by $P_2(\mu)$ into m parts. We split the partitions enumerated

by $P_2(m, \mu)$ into three classes:

- (i) those that do not contain k_k -2 as a part,
- (ii) those that contain 3_1 as a part,
- (iii) those that contain $k_{k-2}(k > 3)$ as a part.

We now transform the partitions into class (i) by subtracting 4 from each part ignoring the subscripts, it will not disturb the inequalities between the parts and transformed partition will be of the type enumerated by $P_2(m, \mu - 4m)$. Next, transform the partitions in class (ii) by deleting the least part 3_1 and then subtracting 2 from all the remaining parts ignoring the subscripts. The transformed partition will be of the type enumerated by $P_2(m-1,\mu-2m-1)$. Finally, we transform the partitions in class (iii) by

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

replacing the part k_{k-2} by $(k+1)_{k-3}$ and then subtracting 2 from all the parts. This will produce the partitions of $(\mu - 2m + 1)$ into m parts. Note here that, by this transformation we will get only those partitions of $(\mu - 2m + 1)$ into m parts which contain a part of the form k_{k-2} .

Therefore, the actual number of partitions which belong to class (iii) is $P_2(m,\mu-2m+1)-P_2(m,\mu-6m+1)$ where $P_2(m,\mu-6m+1)$ is the number of partitions of $\mu-2m+1$ into m parts which are free from parts like K_{k-2} .

The above transformations are clearly reversible and bijection between the partitions enumerated by $P_2(m,\mu)$ and those enumerated by $P_2(m,\mu-4m)$ $+P_2(m-1,\mu-2m-1)$ $+P_2(m-1,\mu-2m+1)$ $-P_2(m,\mu-6m+1)$

This leads to the recurrence relation

$$P_2(m,\mu) = P_2(m,\mu - 4m) + P_2(m-1,\mu - 2m-1) + P_2(m-1,\mu - 2m+1) - P_2(m,\mu - 6m+1)$$
(2.9)

Now let,

$$g_2(z;q) = \sum_{\mu=0}^{\infty} \sum_{m=0}^{\infty} P_2(m,\mu) z^m q^{\mu}$$
 (2.10)

Substituting $P_2(m, \mu)$ from (2.9) into (2.10), we get,

$$g_2(z;q) = g_2(zq^4;q) + zq^3 g_2(zq^2;q) + q^{-1}g_2(zq^2;q) - q^{-1}g_2(zq^6;q)$$
(2.11)

Consider

$$g_2(z;q) = \sum_{n=0}^{\infty} \beta_n(q) z^n$$
 (2.12)

Now, using (2.12) in (2.11) and then comparing the coefficients of z^n , we get

$$\beta_n(q) = q^{4n}\beta_n(q) + q^{2n+1}\beta_{n-1}(q) + q^{2n-1}\beta_n(q) - q^{6n-1}\beta_n(q)$$
 Hence,

$$\beta_n(q) = \frac{q^{2n+1}}{(1-q^{4n})(1-q^{2n-1})} \beta_{n-1}(q) \tag{2.13}$$

Iterating (2.13) n –times and noting that $\beta_0(q) = 1$, we get,

$$\beta_n(q) = \frac{q^{n^2 + 2n}}{(q^4; q^4)_n (q; q^2)_n} \tag{2.14}$$

Putting the value of $\alpha_n(q)$ in (2.12), we get

$$g_2(z;q) = \sum_{n=0}^{\infty} \beta_n(q) z^n$$

$$g_2(z;q) = \sum_{n=0}^{\infty} \frac{q^{n^2+2n}}{(q^4;q^4)_n(q;q^2)_n} z^n$$

$$g_2(1;q) = \sum_{n=0}^{\infty} \frac{q^{n^2+2n}}{(q^4;q^4)_n(q;q^2)_n}$$

Now,

$$\sum_{\gamma=0}^{\infty} P_2(\mu) q^{\mu} = \sum_{\mu=0}^{\infty} (\sum_{m=0}^{\infty} P_2(m, \mu)) q^{\mu}$$

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

$$\begin{split} &= \sum_{\mu,m=0}^{\infty} P_2(m,\mu) \, q^{\mu} \\ &= g_2(1;q) \\ &= \sum_{n=0}^{\infty} \frac{q^{n^2+2n}}{(q^4;q^4)_n (q;q^2)_n} \end{split}$$

This completes the proof.

Theorem 2.3. let $P_3(\mu)$ denote the number of partitions of μ with "n copies of n" into parts greater than or equal to 3 such that if m_i is the least or the only part in the partition then $m \equiv i \pmod{4}$ and weighted difference between consecutive parts is non-negative and $m \equiv i \pmod{4}$

Then the generating function of $P_3(\mu)$ is given by

$$\sum_{n=0}^{\infty} P_3(\mu) \, q^{\mu} = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q^4; q^4)_n (q; q^2)_n}$$
 (2.15)

Proof: let $P_3(m, \mu)$ denote the number of partitions of μ enumerated by $P_3(\mu)$ into m parts. We split the partitions enumerated

by $P_3(m, \mu)$ into three classes:

- (i) those that do not contain k_k as a part,
- (ii) those that contain 1_1 as a part,
- (iii) those that contain k_k (k > 2) as a part.

We now transform the partitions into class (i) by subtracting 4 from each part ignoring the subscripts, it will not disturb the inequalities between the parts and transformed partition will be of the type enumerated by $P_3(m, \mu - 4m)$.

Next, transform the partitions in class (ii) by deleting the least part 1_1 and then subtracting 2 from all the remaining parts ignoring the subscripts. The transformed partition will be of the type enumerated by $P_3(m-1,\mu-2m+1)$.

Finally, we transform the partitions in class (iii) by replacing the part k_k by $(k+1)_{k-1}$ and then subtracting 2 from all the parts. This will produce the partitions of $(\mu-2m+1)$ into m parts. Note here that, by this transformation we will get only those partitions of $(\mu-2m+1)$ into m parts which contain a part of the form k_k .

Therefore, the actual number of partitions which belong to class (iii) is $P_3(m,\mu-2m+1)-P_3(m,\mu-6m+1)$ where $P_3(m,\mu-6m+1)$ is the number of partitions of $\mu-2m+1$ into m parts which are free from parts like K_{k-2} . The above transformations are clearly reversible and bijection between the partitions enumerated by $P_3(m,\mu)$ and those enumerated by $P_3(m,\mu-4m)+P_3(m-1,\mu-2m+1)+P_3(m,\mu-2m+1)-P_3(m,\mu-6m+1)$

This leads to the recurrence relation

$$P_{3}(m,\mu) = P_{3}(m,\mu - 4m) + P_{3}(m - 1,\mu - 2m + 1) + P_{3}(m,\mu - 2m + 1) - P_{3}(m,\mu - 6m + 1)$$
(2.16)

Now let,

$$g_3(z;q) = \sum_{\mu=0}^{\infty} \sum_{m=0}^{\infty} P_3(m,\mu) z^m q^{\mu}$$
 (2.17)

Proceeding as same as in proof of Theorem 2.2, we get the following q-functional equation

$$g_3(z;q) = g_3(zq^4;q) + zq g_3(zq^2;q) + q^{-1}g_3(zq^2;q) - q^{-1}g_3(zq^6;q)$$
(2.18)

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

Consider

$$g_3(z;q) = \sum_{n=0}^{\infty} \gamma_n(q) z^n$$
 (2.19)

Now, since $g_3(0;q) = 1$, using (2.19) in (2.18) and then comparing the coefficients of z^n , we get

$$\gamma_n(q) = q^{4n} \gamma_n(q) + q^{2n-1} \gamma_{n-1}(q) + q^{2n-1} \gamma_n(q) - q^{6n-1} \gamma_n(q)$$
 Hence,

$$\gamma_n(q) = \frac{q^{2n-1}}{(1-q^{4n})(1-q^{2n-1})} \gamma_{n-1}(q) \tag{2.20}$$

Iterating (2.20) n –times and noting that $\gamma_0(q) = 1$, we get,

$$\gamma_n(q) = \frac{q^{n^2}}{(q^4; q^4)_n(q; q^2)_n} \tag{2.21}$$

Putting the value of $\gamma_n(q)$ = in (2.10), we get

$$g_3(z;q) = \sum_{n=0}^{\infty} \gamma_n(q) z^n$$

$$g_3(z;q) = \sum_{n=0}^{\infty} \frac{q^{n^2+2n}}{(q^4;q^4)_n(q;q^2)_n} z^n$$

$$g_3(1;q) = \sum_{n=0}^{\infty} \frac{q^{n^2+2n}}{(q^4;q^4)_n(q;q^2)_n}$$

Now,

$$\begin{split} \sum_{\gamma=0}^{\infty} P_3(\mu) q^{\mu} &= \sum_{\mu=0}^{\infty} (\sum_{m=0}^{\infty} P_3(m,\mu)) q^{\mu} \\ &= \sum_{\mu,m=0}^{\infty} P_3(m,\mu) q^{\mu} \\ &= g_3(1;q) \\ &= \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q^4;q^4)_n(q;q^2)_n} \end{split}$$

This completes the proof.

Acknowledgement: I am thankful to Prof. Helen Kumari Saikia for her constant encouragement and support during the preparation of this manuscript.

Reference:

- 1. A. K. Agarwal and G.E. Andrews, *Rogers-Ramanujan Identities for partitions with "N Copies of N"*, *J. Combin. Theor. Ser. A* 45(1) (1987), 40-49.
- 2. R. J. Baxter, "Exactly Solved Models in Statistical Mechanics", Academic Press, London, 1982.
- 3. A. K. Agarwal and G. E. Andrews, *Rogers-Ramanujan identities for partitions with "N Copies of N," J. Combin. Theor. Ser. A* 45 (1) (1987), 40-49.
- 4. A. K. Agarwal, Padmavathamma and M.V. Subbarao, "Partition Theory, Atma Ram & Sons Publications, 2005.
- 5. A. K. Agarwal and G. Sood, Split (n + t) —colour partition and Gordon-McIntosh eight order mock theta function. Electron J. Combbin. 21(2014), 2, paper #246.

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

- 6. L. J. Slater, Further Identities of the Rogers-Ramanujan Type. *Proceeding of London Math. Soc.* 2(1):147-167, 1952.
- 7. W. N. Bailey, *On the simplification of* some identities of the Rogers-Ramanujan Type. *Proceeding of London Math. Soc.* 3(1):217-221, 1951.
- 8. A. K. Agarwal and M. Rana, New Combinatorial versions of Golnitz-Gordon identities, Utilitus Mathematica, 79: 145-155, 2009.