

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

Environmental Contamination and Public Health: Evaluating the Link between Water Pollution and Disease

Saroj Rani, Bhawana Edison

Botany Department, Navyug Kanya Mahavidyalaya Lucknow Uttar Pradesh India

Abstract

Water is one of the most essential resources for life, economic growth, and environmental balance. However, rapid industrialization, expanding agriculture, and urban development have seriously reduced water quality across the world. Almost 80% of industrial and municipal wastewater is released without treatment, polluting rivers and lakes and harming both humans and ecosystems. Contaminated water spreads many diseases such as cholera, typhoid, hepatitis, and even cancers caused by toxic chemicals and heavy metals. Agricultural runoff, household waste, and plastics also worsen the problem and damage aquatic life. This study explores the main causes, pathways, and health effects of water pollution by combining environmental, medical, and socio-economic perspectives. It highlights the urgent need for better wastewater treatment, stronger environmental laws, and public awareness to secure clean water for the future.

Keywords: Water Pollution, Industrialization, Agricultural Runoff, Wastewater Treatment, Environmental Health, Public Health, Ecosystem Degradation, Sustainable Development.

1. Introduction

Water pollution refers to the contamination of water bodies such as rivers, lakes, oceans, and groundwater by harmful substances that alter their physical, chemical, or biological properties, making them unsafe for drinking, agriculture, and ecosystem balance. Water is one of the most essential natural resources, supporting human survival, economic growth, and environmental sustainability [1]. However, the rapid pace of industrialization, urbanization, and agricultural development has placed severe stress on global freshwater resources. According to the World Health Organization (WHO), nearly 80% of diseases in developing nations are waterborne, and about 3.1% of annual deaths worldwide are associated with poor water quality and inadequate sanitation [2]. Contaminated water carries pathogens and toxic substances that cause diseases such as cholera, typhoid, and dysentery, along with long-term illnesses like cancer and organ damage. Water pollution arises from both point sources—including factories, refineries, and sewage treatment plants—and non-point sources such as agricultural runoff, urban stormwater, and soil erosion. Common pollutants like heavy metals, nitrates, phosphates, pesticides, and microplastics degrade aquatic ecosystems and threaten biodiversity [3]. Industrial effluents release hazardous dyes, chemicals, and

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

metals that accumulate in aquatic organisms and travel up the food chain, eventually affecting human health. Similarly, excessive use of fertilizers and pesticides in agriculture causes nutrient enrichment, leading to eutrophication, algal blooms, and fish mortality [4]. Urban waste, population growth, and inadequate sewage treatment further worsen the crisis. Plastic and polythene waste persist in water for decades, fragmenting into microplastics that contaminate aquatic food chains and pose risks to both marine life and humans. Major sources of water pollution include:

- Domestic sewage wastewater containing detergents, organic matter, and pathogens.
- Industrial effluents toxic chemical and metallic waste from factories.
- Agricultural runoff fertilizers and pesticides contaminating rivers and groundwater.
- Urbanization poor drainage and encroachment on natural water bodies.
- Plastic waste non-biodegradable materials harming aquatic life.

In summary, water pollution is a critical global issue that endangers ecosystems, public health, and economic stability. Immediate international cooperation, stricter pollution control, sustainable wastewater management, and public awareness are essential to ensure clean and safe water for future generations [5].

2. Literature Review

Water pollution and its harmful effects on human health have become a major global concern. Industrial waste, agricultural chemicals, and urban garbage are the primary sources contaminating rivers, lakes, and groundwater. In many developing nations, untreated wastewater from factories and households is discharged directly into water bodies, making them unsafe for consumption and irrigation. Studies from South Asia and sub-Saharan Africa link poor waste management to widespread diseases such as cholera, typhoid, and hepatitis. In countries like China and India, toxic heavy metals such as lead, arsenic, and cadmium contaminate water sources, enter the food chain, and cause serious health problems including cancer, kidney damage, and neurological disorders [6]. Table 1 below summarizes key global research findings on water pollution and its impacts.

Table 1. Summary of Key Studies on Water Pollution and Associated Health Impacts

Ref. No.	Study Location	Focus / Objective	Major Findings	Relevance to Current Study
[7]	Global	Reviewed global water pollution sources	Found industrial, agricultural, and household waste as main contributors	Gives overall classification of pollution sources
[8]	Global	Studied industrial wastewater impact	Reported long-term toxicity in aquatic species and food chains	Shows ecosystem-level contamination
[9]	Global	Estimated waterborne disease burden	Found 2.2 million deaths annually from diarrheal and parasitic diseases	Confirms global health crisis
[10]	OECD Countries	Studied agricultural runoff	Found fertilizers and pesticides causing eutrophication	Supports link between agriculture and nutrient pollution

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

[11]	Nigeria	Examined industrial pollution control issues	Found weak laws leading to river contamination	Highlights policy and management gaps
[12]	India	Studied groundwater contamination	Found nitrates and metals causing cancer and "blue baby syndrome"	Shows human health risks of pollutants
[13]	Punjab, India	Examined cancer cases linked to groundwater	Found arsenic and nitrate pollution increasing cancer rates	Connects pollution to chronic diseases
[14]	China	Studied industrial discharge and health	Found link between industrial pollution and rising chronic illness	Confirms industrial impact on health
[15]	Bangladesh	Studied polluted water and public health	Found more diseases in areas with untreated sewage	Shows public health dimension of pollution
[16]	Canada	Studied polluted drinking water and infant health	Found low birth weight and infant deaths linked to poor water quality	Provides link between water and child health

From these studies, it is clear that water pollution is a major cause of both environmental damage and human disease. Industrial, agricultural, and domestic sources collectively degrade water quality and harm aquatic ecosystems [17]. Polluted water is linked to infectious and chronic diseases, especially in low-income areas where people lack access to clean water. Major pollutants include heavy metals, pesticides, nitrates, and microplastics that persist in the environment and enter the food chain [18]. The review also shows that developing countries face more challenges due to weak infrastructure, poor waste treatment, and limited public awareness. Strengthening wastewater management, enforcing pollution control laws, and promoting education about clean water practices are essential to solving this crisis [19].

This paper is organized as follows: Section 1 introduces the topic and sources of water pollution. Section 2 reviews past studies and identifies gaps. Section 3 describes the research methods. Section 4 discusses health impacts of polluted water. Section 5 examines socio-economic effects. Section 6 presents limitations and future work, and Section 7 concludes with key findings and policy recommendations.

3. Materials and Methods

This study is based on a comprehensive review of secondary literature, including peer-reviewed journals, global health reports, and environmental assessments. Data were sourced from ScienceDirect, SpringerLink, and WHO publications. Using a qualitative interdisciplinary framework, the study analyzed pollutant sources, pathways, and health impacts across developed and developing regions.

3.1 Effects on Human Health

Waterborne diseases are a major global public health concern. Contaminated water contains viruses, bacteria, parasites, and toxic chemicals that spread mainly through the fecal-oral route, especially in regions with poor sanitation. Such pollution causes acute illnesses like diarrhea, cholera, and typhoid, as well as chronic diseases including cancer, kidney failure, and neurological disorders [20]. Nitrogen compounds form carcinogenic nitrosamines, leading to methemoglobinemia ("blue baby syndrome") in

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

infants and developmental problems during pregnancy. Polluted irrigation water also introduces arsenic, cadmium, and iron into crops, contaminating the food chain and causing long-term liver, kidney, and brain damage [21].

Table 2. Major Water Pollutants and Their Associated Health Effects [22]

Pollutant / Contaminant	Primary Source(s)	Human Health Impacts	Environmental Effects
Arsenic (As) Lead (Pb)	Industrial discharge, mining, groundwater contamination	Skin lesions, liver and heart disease, cancers (skin, bladder, lung)	Toxic to aquatic life; accumulates in sediments
	Battery manufacturing, plumbing, paints, industrial waste	Brain and nerve damage, anemia, kidney failure, learning disabilities in children	Toxic to fish and plants; long-lasting in water
Cadmium (Cd)	Metal plating, fertilizers, e-waste runoff	Bone damage, kidney failure, carcinogenic effects	Accumulates in aquatic organisms; reduces biodiversity
Mercury (Hg)	Coal burning, gold mining, industrial waste	Nerve and brain damage, immune system weakness, developmental defects	Bioaccumulates in food chains; toxic to fish and birds
Nitrates (NO ₃ -)	Agricultural runoff, fertilizers, sewage	Blue baby syndrome, reproductive issues, cancer risk	Causes eutrophication and algal blooms
Fluoride (F ⁻)	Groundwater leaching, industrial emissions	Dental and skeletal fluorosis, joint stiffness	Changes soil and plant mineral balance
Chromium (Cr ⁶⁺)	Leather tanning, electroplating, dyes	Respiratory and liver damage, lung cancer	Toxic to aquatic microorganisms
Pesticides (DDT, Endosulfan)	Agricultural runoff, chemical misuse	Hormonal imbalance, reproductive issues, cancer	Kills aquatic fauna and beneficial microbes
Microplastics	Plastic waste, textile fibers, packaging	Gastrointestinal irritation, inflammation, chemical toxicity	Blocks sunlight, affects photosynthesis in water
Pathogenic Microorganisms	Sewage, open defecation, contaminated water	Cholera, typhoid, hepatitis, diarrhea	Pollutes aquatic habitats, lowers water quality

3.1.1 Viral Infections

Contaminated water is a key medium for viral diseases, especially in densely populated areas lacking proper sanitation. Hepatitis A and E viruses, transmitted through fecal-contaminated water, cause liver inflammation, jaundice, and fatigue. Gastroenteritis, caused by rotaviruses, adenoviruses, and caliciviruses, leads to vomiting, dehydration, and diarrhea, often fatal among children. Encephalitis, spread by mosquitoes breeding in stagnant water, causes fever, convulsions, and neurological complications. Poliomyelitis, transmitted through polluted water, can result in permanent paralysis in unvaccinated populations [23].

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

3.1.2 Parasitic Diseases

Waterborne parasites are a major concern in polluted regions. *Cryptosporidium parvum* causes *cryptosporidiosis*, leading to watery diarrhea and abdominal cramps, especially in individuals with weak immunity. *Entamoeba histolytica* causes *amoebiasis*, leading to intestinal infection and sometimes liver abscesses. According to the WHO, parasitic and bacterial diarrheal diseases cause about 4 billion infections and 2.2 million deaths annually, mostly in low-income areas lacking clean water. These infections lead to malnutrition, stunted growth, and reduced productivity, worsening social and economic inequalities [24].

3.1.3 Cancer Risks

Prolonged exposure to chemical contaminants in water significantly increases cancer risk. Research links arsenic, nitrates, lead, and chlorinated hydrocarbons in drinking water to cancers of the skin, bladder, liver, and stomach. Industrial groundwater often contains high levels of Pb, U, F⁻, and NO₃⁻, while fertilizers and chlorination by-products like trihalomethanes heighten colon and bladder cancer risks [26]. Chronic arsenic exposure in Bangladesh, West Bengal, and Punjab causes arsenicosis with skin lesions and cardiovascular issues. Strong monitoring and wastewater treatment are vital to reduce this carcinogenic threat [25].

4. Discussion

The findings of this study confirm that water pollution is not only an environmental concern but also a complex socio-economic issue. Rapid industrialization, population growth, and agricultural activities have worsened surface and groundwater contamination. Toxic metals accumulate in aquatic organisms and enter the food chain, increasing chronic disease risks. Inadequate wastewater treatment and weak public health systems, especially in developing nations, heighten community exposure. Therefore, effective mitigation requires coordinated technological, policy, and awareness-based measures to safeguard human and ecological health.

5. Socio-Economic Impacts of Water Pollution

Water pollution creates severe socio-economic burdens in developing countries, costing billions annually in healthcare and lost productivity. Contaminated water increases medical expenses, reduces labor output, and harms agriculture, fisheries, and tourism. Affected communities face displacement and food insecurity [26]. Combating these challenges requires integrated policies linking water management, economic planning, and social welfare for sustainable development.

6. Limitations and Future Scope

This study relies on secondary data, which may vary in accuracy across regions. Future research should incorporate primary data collection, field sampling, and geospatial modeling to establish precise links between pollution and disease. Interdisciplinary studies and predictive models are essential to explore long-term, genetic, and intergenerational health effects of waterborne contaminants [27].

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

Conclusion

Water pollution is a critical global issue that threatens both environmental sustainability and human health. The continuous discharge of untreated sewage, industrial effluents, and agricultural runoff has severely degraded water quality, reduced access to safe drinking water, and damaged aquatic ecosystems. Contaminated water spreads infectious diseases such as cholera, typhoid, and hepatitis, while prolonged exposure to toxic chemicals causes chronic illnesses like cancer, neurological disorders, and developmental defects. Beyond health risks, water contamination disrupts ecosystems, decreases agricultural productivity, and endangers food and economic security. Addressing this problem requires integrated and sustainable management of water resources at all levels. Based on the findings of this review, key measures include treating domestic and industrial wastewater before discharge, enforcing strict industrial and agricultural regulations, and promoting public awareness about water conservation and hygiene. Technological innovations such as bioremediation, nanotechnology, and decentralized purification systems must be encouraged. Strong environmental policies, good governance, and global cooperation are vital to ensure safe and clean water for future generations.

Reference

- 1. Ahmed, T., Scholz, F., Al-Faraj, W., et al. (2013). Water-related impacts of climate change on agriculture and subsequently on public health: A review for generalists with particular reference to Pakistan. *International Journal of Environmental Research and Public Health*, 13, 1–16.
- 2. Alrumman, S. A., El-Kott, A. F., & Kehsk, M. A. (2016). Water pollution: Source and treatment. *American Journal of Environmental Engineering*, 6(3), 88–98.
- 3. Andersson, I., & Fenger, B. H. (2003). *Environment and human health*. European Environment Agency, 250–271.
- 4. Bibi, S., Khan, R. L., Nazir, R., et al. (2016). Heavy metals in drinking water of Lakki Marwat District, KPK, Pakistan. *World Applied Sciences Journal*, *34*(1), 15–19.
- 5. Briggs, D. (2003). Environmental pollution and the global burden of disease. *British Medical Bulletin*, 68, 1–24.
- 6. Cantor, K. P. (1997). Drinking water and cancer. Cancer Causes & Control, 8(3), 292–308.
- 7. Chen, B., Wang, M., Duan, M., Ma, X., Hong, J., Xie, F., et al. (2019). In search of key: Protecting human health and the ecosystem from water pollution in China. *Journal of Cleaner Production*, 228, 101–111.
- 8. Chowdhary, P., Bharagava, R. N., Mishra, S., & Khan, N. (2020). Role of industries in water scarcity and its adverse effects on environment and human health. In *Environmental Concerns and Sustainable Development* (pp. 235–256). Springer.
- 9. Chowdhury, S., Annabelle, K., & Klaus, F. Z. (2015). *Arsenic contamination of drinking water and mental health* (pp. 1–28).
- 10. Currie, J., Joshua, G. Z., Katherine, M., et al. (2013). Something in the water: Contaminated drinking water and infant health. *Canadian Journal of Economics*, 46(3), 791–810.
- 11. Desai, N., & Smt, Vanitaben. (2014). A study on the water pollution based on the environmental problem. *Indian Journal of Research*, *3*(12), 95–96.
- 12. Dwivedi, S., Mishra, S., & Tripathi, R. D. (2018). Ganga water pollution: A potential health threat to inhabitants of Ganga Basin. *Environment International*, 117, 327–338.

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

- 13. Halder, J., & Islam, N. (2015). Water pollution and its impact on human health. *Environmental Health*, 2(1), 36–46.
- 14. Ho, Y. C., Show, K. Y., & Guo, X. X. (2012). Industrial discharge and their effects on the environment. In *Industrial Waste* (pp. 1–32).
- 15. Jabeen, S. Q., Mehmood, S., Tariq, B., et al. (2011). Health impact caused by poor water and sanitation in district Abbottabad. *Journal of Ayub Medical College Abbottabad*, 23(1), 47–50.
- 16. Juneja, T., & Chauhdary, A. (2013). Assessment of water quality and its effect on the health of residents of Jhunjhunu District, Rajasthan: A cross-sectional study. *Journal of Public Health and Epidemiology*, 5(4), 186–191.
- 17. Kamble, S. M. (2014). Water pollution and public health issues in Kolhapur city in Maharashtra. *International Journal of Scientific and Research Publications*, 4(1), 1–6.
- 18. Anil, K. D. (2017). Researches in water pollution A review. International Journal, 4(1), 1–6. ISSN 2349–4077.
- 19. Garg, M. (2012). Water pollution in India: Causes and remedies. International Journal of Engineering and Science Invention, 2(6), 1–5. ISSN 2249–5894.
- 20. Meenakshi, K. C. (2015). Water pollution in India: Causes and remedies. International Journal of Science and Research (IJSR), 4(8), 1–4.
- 21. Royal, E. W., et al. (2018). Water pollution in India An overview. International Journal of Advanced Research in Science, Engineering and Technology, 6(5), 1–6. ISSN 2320–4168.
- 22. Kaur, G., Kumar, R., Mittal, S., Sahoo, P. K., & Vaid, U. (2021). Ground/drinking water contaminants and cancer incidence: A case study of rural areas of South West Punjab, India. *Human and Ecological Risk Assessment: An International Journal*, 27(1), 205–226.
- 23. Khan, M. A., & Ghouri, A. M. (2011). Environmental pollution: Its effects on life and its remedies. *Journal of Arts, Science & Commerce*, 2(2), 276–285.
- 24. Khan, N., Hussain, S. T., Saboor, A., et al. (2013). Physicochemical investigation of the drinking water sources from Mardan, Khyber Pakhtunkhwa, Pakistan. *International Journal of Physical Sciences*, 8(33), 1661–1671.
- 25. Krishnan, S., & Indu, R. (2006). *Groundwater contamination in India: Discussing physical processes, health and socio-behavioral dimensions.* IWMI-Tata Water Policy Research Programmes, Anand, India.
- 26. Marmot, M., Atinmo, T., Byers, T., Chen, J., & Zeisel, S. H. (2007). Food, nutrition, physical activity, and the prevention of cancer: A global perspective. Nutrition Bulletin.
- 27. Moss, B. (2008). Water pollution by agriculture. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *363*(1491), 659–666. https://doi.org/10.1098/rstb.2007.2176