

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

Profit Optimization Using Power-Efficient Machines with Lever-Flywheel Mechanical Advantage

Prof. Nagendrapratap Singh

PerpetualGravity Labs Pvt Ltd, Navi Mumbai, India Email: n4nagendrap@gmail.com

Abstract

Lever—flywheel systems can enhance industrial profitability by reducing power input requirements while maintaining output capacity.

This study compares a 2 HP and a 0.5 HP machine, analyzing their mechanical advantage, energy efficiency, and profit optimization potential.

Results show that machines with higher leverage ratios provide better profitability despite higher absolute energy consumption.

1. Introduction

The global manufacturing sector faces two simultaneous challenges: rising energy costs and the need for sustainable production practices.

Lever-flywheel mechanisms amplify mechanical power using a ratio of diameters (D₂/D₁), enhancing output without proportional increases in input power.

This research investigates the relationship between mechanical advantage (MA), electric power consumption, and profit optimization, using data from two prototype machines.

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

Methodology

Machine Data

Machine	Capacity	Size	Weight	Flywheel	Load	MA	Power	Speed
	(HP)	(inches)	(kg)	Diameter	Arm	(D_2/D_1)	(W)	(rpm)
				(D_2)	(D ₁)			
Thakur	2.0	44	40	80	30	2.67	1492	100
College								
Fr. C.	0.5	30	20	30	30	1.0	373	100
Rodrigues								

Profit Calculation Example

Machine	Power	Hourly Energy	Hourly Cost	Units	Cost per Unit
	(W)	(kWh)	(₹)	Produced/hr	(₹)
Thakur College	1492	1.492	16.412	300	0.055
Fr. C.	373	0.373	4.103	80	0.051
Rodrigues					

Results and Discussion

The 2 HP machine achieved ~3× leverage, enabling higher load handling with relatively lower incremental power input.

At 100 rpm, the 2 HP machine consumed ~1492 W, while the 0.5 HP machine consumed ~373 W. When normalized against load handled, the 2 HP machine demonstrated better profit-to-energy ratio despite higher absolute consumption.

Conclusion

Lever–flywheel systems offer a sustainable path for profit optimization in manufacturing. By harnessing mechanical advantage, industries can achieve higher productivity without proportional increases in power consumption.

Future research should focus on integrating lever-flywheel designs with renewable energy sources and conducting sector-wide cost analyses.

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 • Website: www.aijfr.com • Email: editor@aijfr.com

References

- 1. Singh, N. (2024). Gravity Mechanics and Energy Efficiency. PG Labs Publications.
- 2. Rao, J. S. (2018). Mechanical Advantage in Lever Systems. Springer.
- 3. Cengel, Y. (2015). Thermodynamics and Energy Systems. McGraw-Hill.