

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 1

Comparison Between Machine Learning Based

Models and Traditional Fault Prediction

Approaches for Upgrading Software Reliability

Dinesh Kumar1, Dr. Saurabh Charaya2

1Research Scholar, Department of Computer Science and Applications,

Om Sterling Global University, Hisar, India
2Professor, School of Engineering and Technology,

Om Sterling Global University, Hisar, India

Abstract

Maintaining high industry standards is heavily dependent on software stability, which in turn affects

product quality, customer happiness, and operational efficiency. Although they have their uses,

traditional failure prediction methods aren't always up to snuff when it comes to today's complex and

ever-changing software systems. In this study, Conventional research work related to fault prediction

and machine learning has been discussed. Organizations can reduce maintenance costs, minimize

downtime, and improve overall software quality by proactively addressing reliability issues through the

integration of this paradigm into the software development lifecycle. Compared to more conventional

methods of fault prediction, the ML-based approach significantly outperforms them in terms of

prediction accuracy, flexibility, and scalability, according to empirical assessments. By laying out a solid

plan for improving software reliability, this study advances the field and establishes new standards for

the business.

Keywords: Software Reliability, Fault Prediction, Machine Learning, Industry Standards, Software

Quality

1. Introduction

Ensuring software system stability is critical in today's fast-paced software development environment to

meet user expectations and keep industry standards high [1]. Despite their usefulness, traditional fault

prediction methods frequently fail to handle the intricacies and ever-changing nature of contemporary

software, resulting in incorrect forecasts and heightened maintenance requirements [2, 3]. A more

sophisticated and accurate method of defect prediction is desperately needed due to the increasing

complexity of software systems [4]. An attractive alternative is machine learning (ML), which can

examine massive datasets, identify complex patterns, and make better predictions of possible software

errors. In order to improve software dependability, this work presents an ML-based model that

outperforms conventional methods of failure prediction [5]. Reduced system downtime, decreased

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 2

maintenance costs, and a new industry standard for software quality are all goals of the proposed

approach, which seeks to increase the accuracy of defect forecasts by utilizing the strengths of machine

learning [6].

1.1 Background

The software industry has long struggled with the problem of guaranteeing program reliability, since

even small errors can cause huge problems with operations, money, and reputation. Anticipating and

reducing software errors has traditionally been accomplished through the use of methods like static code

analysis, expert-based rule systems, and historical fault data analysis [7]. But contemporary software

systems are notoriously difficult to adjust to, what with their huge codebases, frequent upgrades, and

varied operating conditions. These more conventional methods' shortcomings have brought attention to

the necessity for cutting-edge ways that can manage the complex patterns and massive datasets common

in modern software development [8]. Machine learning's (ML) capacity to adapt and get better with

experience has made it a hot commodity as a technique to increase the accuracy of defect predictions [9].

There is hope for ML-based models as an alternative to traditional defect prediction methods; these

models have the ability to analyze large software datasets and find patterns that previous methods might

miss, therefore increasing software reliability [10]. This movement towards defect prediction powered

by ML is reflective of a larger industry trend towards data-driven approaches to solve complex problems

and improve software quality [11].

1.2 Software Reliability

Software reliability, which measures the probability of a system functioning without failure for a set

duration under specific circumstances, is an essential component of software quality. As a result,

software engineers place a premium on it because of the impact it has on user confidence, operational

efficiency, and the bottom line [12]. In today's fast-paced and immensely competitive technology world,

dependable software is crucial because it guarantees continuous performance, prevents unexpected

disruptions, and decreases the need for frequent maintenance [13]. Historically, techniques such as static

code analysis, expert opinion, and historical data analysis have been used to achieve high software

reliability by detecting and fixing possible defects early in the development process. Traditional methods

of defect prediction in software systems typically fail to keep up with the ever-changing and

interdependent nature of modern software systems [14]. Machine learning and other advanced prediction

algorithms can sift through mountains of data, spot minute trends, and produce faster, more accurate

fault forecasts, all of which are necessary for improving software reliability. Businesses may raise the

bar for software reliability and performance by incorporating machine learning into defect prediction

processes, which in turn improves software quality and performance.

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 3

Fig 1 Software Reliability Measurement Techniques

1.3 Machine Learning

Machine learning (ML) is a game-changing technology that has revolutionized software engineering. It

provides robust tools to improve software development in many ways, including reliability [15].

Machine learning algorithms improve their performance over time by learning from large and

complicated datasets, in contrast to traditional methods that depend on predetermined rules and past data

[16]. Code metrics, historical bug reports, and real-time system data are just a few of the numerous

sources of information that ML can analyze to forecast possible software failures. Better and faster

predictions are possible because these algorithms can find connections and patterns that humans or older

fault prediction models can overlook. And because of their intrinsic flexibility, ML models may easily

react to different software environments, codebases, and error types. Given the rapidity with which

software systems are changed and deployed in modern development cycles, this adaptability is vital.

Incorporating machine learning (ML) fault prediction models into software development lifecycle allows

organizations to proactively handle foreseeable issues, improve software reliability, and raise industry

standards for software performance and quality [17].

Software
Reliability
Techniques

Product
Metrics

Project
Metrics

Fault &
Failure
Metrics

Process
Metrics

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 4

Fig 2 Types of Machine Learning

1.4 Traditional Fault Prediction

Software dependability has traditionally relied on traditional fault prediction methods, which use

approaches like static code analysis, expert-based rule systems, and historical fault data investigation, to

a certain extent [18]. Many methods exist for predicting the probability of software errors, but the most

common ones include searching source code for patterns of known defects, using rules established from

previous experiences, or making use of statistical models. The complexity and dynamism of today's

software systems are outpacing the effectiveness of these solutions, which have proved useful to a

certain degree [19]. Since software codebases are dynamic and run in a variety of situations, traditional

methods often fall short since they rely on static rules and historical data. On top of that, these methods

aren't always accurate, particularly when faced with defects that weren't there in earlier datasets.

Therefore, high software reliability criteria in today's rapidly evolving technological landscape may be

unattainable with the help of conventional fault prediction approaches due to their lack of accuracy and

flexibility [20]. The need to find better ways to improve software reliability has prompted research into

more sophisticated approaches like machine learning, which can make better failure predictions [21].

1.5 Machine Learning for Software Reliability

Machine learning (ML) has emerged as a critical tool for improving software dependability, surpassing

the shortcomings of conventional fault prediction techniques [22]. Machine learning models have the

ability to learn from vast and varied datasets in real-time, revealing intricate patterns and correlations

that humans could overlook. This is in contrast to traditional methods that frequently depend on static

rules and past data. When it comes to software reliability, ML is used to provide better defect predictions

by examining a variety of inputs like code metrics, bug history, and real-time performance

measurements [23]. These models excel at learning from new data to enhance their predictions over

time, adapting to dynamic software environments. With the use of ML, enterprises may improve the

reliability of their software systems by detecting possible issues earlier in the software development

lifecycle, reducing the occurrence of undetected faults, and eliminating them altogether. Because of this,

Types of
Machine
Learning

Supervised Unsupervised
Semi

Supervised
Learning

Reinforcement
Learning

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 5

software becomes more reliable, which in turn reduces maintenance costs, increases user satisfaction,

and enhances software quality and robustness, all of which help to raise industry standards.

1.6 Significance of research

Efficacious machine learning-based models have the ability to improve software dependability, which is

important since it might solve the problems with current defect prediction methods and establish new

benchmarks for the industry. Modern software is complicated and constantly evolving, making

traditional solutions that depend on static rules and past data ineffective [24]. An effective substitute is

machine learning, which uses sophisticated algorithms to sift through varied and expansive datasets, spot

intricate patterns, and adjust to new program settings. In turn, this skill improves software reliability and

decreases maintenance costs by allowing for more accurate and timely defect predictions. Machine

learning models that improve defect detection and work in tandem with current software development

methods to provide predictions and insights in real time are the focus of this study. More resilient

systems, better software quality, and happier users are the results of this study's advancements in defect

prediction, which in turn lead to better industry standards. With a more effective answer to the problems

that old methods have, this research is going to revolutionize software dependability management.

1.7 Motivation of research

The increasing requirement for very dependable software in sectors where even small mistakes can have

major ramifications, along with the increasing complexity of contemporary software systems, is driving

this research. Despite its worth, traditional defect prediction methods are falling short in handling the

complexities of modern software environments. As a result, there are more and more dependability gaps

and maintenance expenses are going up. More sophisticated, precise, and adaptable fault prediction

systems are urgently required since software is integral to every aspect of modern life, from corporate

processes to consumer goods [25]. To tackle these issues, this study investigates how machine learning

(ML) might improve software dependability. Improved software quality, fewer system failures, and

higher industry standards can be achieved by using ML's capacity to handle massive amounts of data

and reveal hidden patterns to create a defect prediction model. The end goal is to deliver a solid

foundation that can handle the present and future needs of software reliability while also establishing a

new standard for software engineering.

2. Literature review

A new set of software metrics, Erme-type software metrics (ESM), was introduced by P. Khoa et al. in

2023. ESM gives prediction models information on patterns of various Java runtime errors. The most

common lav runtime issues, including Index Out of Bounds Exception, Null Pointer Exception, and

Class Cast Exception, are detailed in the ESM values. The proposed Error-type software metrics did, in

fact, greatly enhance the accuracy with which machine learning models predicted the likelihood of

errors. [1]

In their 2023 article, G. Youdi et al. present a thorough analysis of dataset quality. This presents a

thorough methodology for evaluating quality, including a framework for evaluating datasets using

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 6

dimensions and metrics, as well as methods for computing quality measures and assessment models. The

overall advancements in evaluating dataset quality are emphasized. [2]

A. Elmishali et al. built failure prediction models in 2023 using software measurements as features. They

introduced a new paradigm for building features called Issue-Driven features, which integrate software

metrics with requirements information. An analysis of 86 open-source projects reveals that, compared to

state-of-the-art features, Issue-Driven features outperform them by 6% to 13% in terms of AUC. [3]

Ensemble Machine Learning handles feature irrelevance, missing data, and uneven distribution between

defective and now faulty classes. T. Sharma et al. demonstrated this in 2023. The performance of defect

prediction is also shown to have been improved. The writers have made an effort to understand the

patterns, techniques, and dataset that academics use to find software problems. For the purpose of

software defect prediction, this article examines all ensemble-based machine learning methods that have

been created between 2018 and 2021. [4]

S. Pandey et al. (2023) reviewed state-of-the-art algorithms for software failure prediction, with an

emphasis on problems with class imbalance. In order to help the researcher choose the most effective

methods for software failure prediction, we provide a comparative presentation of several datasets and

algorithms. Further observation: SMOTE is the data sampling technique most often employed to address

data quality issues. [5]

Made from samples of the majority and bound with samples of the minority, these are called Manually

Disjoint Data Sets (MDS). Ensemble models were generated by applying a collection of diverse machine

learning methods to the bound nut-samples. When using a double-voting procedure, ensembles of

mutually disjoint data sets prioritize minority samples. On average, this strategy improves recall by

13.72 percent on test data, compared to just 3 percent on train data. [6]

In 2023, the effectiveness of various machine learning algorithms in identifying malware on Android

was examined by A. Hani et al. To get the highest level of accuracy, it utilizes PCA, normalizes the

numerical features, and the Synthetic Minority Over-sampling Technique (SMOTE). To detect and

categorize families of android malware, a light GBM model is suggested. Based on the results, the Light

GBM model outperforms the other techniques that were tested in terms of accuracy. Light GBM

achieves an F-1 score of 95.47 percent. [7]

Software defect prediction using deep learning algorithms was the goal of Batool et al. in 2023. The

trials employ RBFN, BILSTM, and LSTM, three deep learning algorithms. In terms of accuracy, the

LSTM algorithm achieves 93.53% and the BILSTM algorithm 93.75%, respectively, which is greater

performance. Nonetheless, RBFN achieves an accuracy of 82.58%. While LSTM and BILSTM are both

fast algorithms, RBFN outperforms them by a significant margin. [8]

An effective method for predicting software failures using hybrid machine learning techniques was

presented by R. Chennappan et al. in 2023. The first step is to optimize the dataset's features using a

Genetic Algorithm (GA), which allows for feature selection with a better fitness function. Once the best

characteristics have been chosen, a classification approach called the Decision Tree (DT) algorithm is

employed to process them. [9]

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 7

S. D. Immaculate and colleagues (2019) In order to improve speed, dependability, and quality, software

engineers are increasingly turning to Machine Learning methods for bug prediction. This method

constructs models and makes bug predictions from past data using Logistic regression, Naïve Bayes, and

Decision Tree classifiers. The models are designed to operate effectively in all settings using random

forest ensemble classifiers and K-Fold cross validation [10].

Software fault prediction (SFP) is a method developed by Caulo, M. et al. (2019) that employs software

metrics to generate predictive models. These models are based on machine learning and statistical

approaches. For metrics to be organized and communicated consistently, a taxonomy is required. A

global grasp of metrics—acronyms, full names, descriptions, and research articles—is being sought for,

and this doctoral symposium paper details current efforts to build such a taxonomy [11].

A new method for improving malware detection systems using a feature hashing methodology is

presented by Moon et al. (2022). By studying how to decrease the dimensionality of feature sets while

maintaining detection accuracy, they hope to make machine learning-based malware detection more

efficient. Significant gains in computational efficiency and accuracy are demonstrated by the suggested

method, which could have far-reaching ramifications for cybersecurity.[12]

Y. Liu, et. al. (2022) conduct a comparative study to understand the impact of data imbalance on

software defect prediction. Their findings highlight how imbalanced datasets can affect the performance

of defect prediction models, stressing the importance of addressing this issue to enhance the accuracy

and reliability of the predictions. They suggest potential strategies for mitigating this challenge in

software defect prediction tasks [13].

N. Sharma, et al. (2021) explores various applications of machine learning and deep learning in different

domains. The authors present a vision for the future of these technologies, emphasizing their growing

significance in various fields such as healthcare, finance, and software engineering. They argue that

machine learning and deep learning models can greatly improve decision-making and automation

capabilities across diverse sectors [14].

A. El-Kilany, et al. (2021) propose a novel adversarial-guided oversampling technique (TGT) to tackle

the issue of imbalanced datasets in machine learning tasks, specifically in the context of software defect

prediction. This technique aims to generate synthetic data points that help balance the class distribution,

thereby improving the overall performance of machine learning models in detecting software defects

[15].

M. Mangla, (2021) introduce a sequential ensemble model designed to improve software fault

prediction. By combining multiple models in a sequence, the ensemble approach aims to reduce errors

and enhance prediction accuracy. This work contributes to the field by providing a more robust method

for predicting software defects using machine learning techniques [16].

B. Mumtaz, et al. (2021) focuses on feature selection using an artificial immune network approach for

software defect prediction. The authors argue that selecting the right features is crucial to enhancing the

performance of defect prediction models. Their work demonstrates the effectiveness of artificial immune

networks in selecting relevant features from large and complex datasets [17].

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 8

M. Mustaqeem (2021) presents a hybrid technique for software defect detection that combines Principal

Component Analysis (PCA) with Support Vector Machine (SVM). The authors claim that the integration

of PCA for dimensionality reduction and SVM for classification results in a more accurate and efficient

software defect detection model, reducing the complexity of the prediction task [18].

A. Rahim, et al. (2021) explore the use of the Naive Bayes classifier for software defect prediction. They

evaluate the effectiveness of this simple yet powerful machine learning algorithm in predicting defects,

comparing it with other more complex models. Their results indicate that Naive Bayes can be a viable

option for software defect prediction, particularly when dealing with large datasets [19].

M. Nevendra (2021) examine of deep learning techniques for software defect prediction. The authors

argue that deep learning, with its ability to automatically extract features from raw data, holds significant

promise for improving the accuracy of defect prediction models. Their findings suggest that deep

learning models outperform traditional machine learning techniques in terms of prediction accuracy

[20].

E. M. Rey, (2021) integrated iterative machine teaching and active learning into the machine learning

loop. The authors propose that these techniques can be used to enhance the learning process by actively

selecting the most informative data points and iterating over them to improve model performance. Their

approach aims to make machine learning systems more efficient and accurate by reducing the number of

required labeled samples [21].

S. K. Rath, (2022) present a comparative analysis of reliability prediction models in software

engineering. They compare various methods for predicting software reliability, focusing on their

accuracy and applicability to different types of software systems. Their study contributes to the field by

providing insights into the strengths and weaknesses of different reliability prediction techniques [22].

A. S. Mohamad (2022) introduces a machine learning-empowered softwion system that integrates

Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classification techniques. The

study compares the performance of these models for predicting software defects, demonstrating the

potential of machine learning techniques in improving defect prediction accuracy [23].

K. Sofian, et al. (2022) proposes the Salp Swarm Optimizer (SSO) to model the software fault prediction

problem. The authors demonstrate the effectiveness of this metaheuristic optimization algorithm in

improving the accuracy of software fault prediction models, suggesting that SSO can be a valuable tool

for tackling complex prediction tasks [24].

D. Mohammad et al. (2022) discusses the development of a machine learning-powered software defect

prediction system, focusing on the integration of intelligent automation techniques to enhance the

prediction accuracy. The authors propose a system that leverages machine learning models to predict

software defects more efficiently and accurately, integrating various automation methods to streamline

the process [25]. The field of software defect prediction has seen significant advancements through the

application of various machine learning and optimization techniques. Research efforts have been

directed toward understanding and improving the reliability of software by predicting fault-prone

modules. Choudhary et al. (2018) [26] conducted an empirical analysis of change metrics and

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 9

highlighted their effectiveness in software fault prediction, emphasizing the importance of dynamic

change data over static attributes. Similarly, Kaur (2018) [27] evaluated multiple classification

algorithms, providing insights into their applicability for fault prediction in open-source projects.

Manjula and Florence (2018) [28] introduced a hybrid machine learning approach combined with

optimization techniques, demonstrating improved prediction accuracy and reduced false positives.

Hybrid methodologies were further explored by Rhmann (2018b) [29], (2018a) [30], who applied hybrid

search-based algorithms for cross-project defect prediction, addressing the challenges of dataset

diversity and feature variance. Sharma and Chandra (2018) [31] presented a comparative analysis of soft

computing techniques, underscoring their relevance in developing efficient fault prediction models.

The role of machine learning techniques, such as those outlined by Raschka and Mirjalili (2017) [32],

has been pivotal in advancing defect prediction frameworks. Malhotra (2017) [32] proposed a

framework for defect prediction in Android software using empirical approaches, while Yang et al.

(2015) [33] employed a learning-to-rank methodology for prioritizing defect-prone modules, enhancing

prediction reliability. Studies by Erturk and Sezer (2015) [34] and Zhou et al. (2010) [38] have

compared complexity metrics and soft computing methods, revealing their varying efficacy across

different project types.

Foundational works, including those by Moser et al. (2008) [39] and Kim et al. (2008) [40], have

examined the efficiency of change metrics and static code attributes, respectively, providing benchmarks

for subsequent research. Additionally, the application of fuzzy rule-based classifiers (2006, 2004) [42,

43] has been explored as a means to handle uncertainty in defect prediction tasks, showcasing the

evolution of methodologies from deterministic to probabilistic approaches.

These studies collectively highlight the growing sophistication in software defect prediction, with a shift

toward hybrid and optimization-driven approaches to enhance model performance and applicability in

diverse software development environments.

Table 1 Literature survey

Ref Author /

Year

Objective Technique Limitation

[1] Khoa et al.

(2023)

Propose a novel set of

software metrics for fault

prediction

Error-Type Metrics May not be applicable to

all software types

[2] Youdi et al.

(2023)

Survey on dataset quality in

ML

Literature Review Limited to quality

aspects only

[3] Elmishali et al.

(2023)

Investigate issue-driven

features for fault prediction

Issue-Driven Features Focuses on specific

issues, may not

generalize

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 10

[4] Sharma et al.

(2023)

Explore ensemble ML

paradigms in defect

prediction

Ensemble Methods May have high

computational costs

[5] Pandey et al.

(2023)

Survey recent developments

in fault prediction for

imbalanced data

Survey of Techniques Focuses on imbalance

handling only

[6] Koyyada et al.

(2023)

Multi-stage approach for

class imbalance

Ensemble Method Complexity in model

implementation

[7] Hani et al.

(2023)

Comparative analysis of

ML for malware detection

Comparative Analysis Limited to Android

malware

[8] Batool et al.

(2023)

Software fault prediction

using deep learning

techniques

Deep Learning May require extensive

computational resources

[9] Chennappan et

al. (2023)

Automated software failure

prediction using hybrid ML

Hybrid ML

Algorithms

Hybrid methods may

increase model

complexity

[10] Immaculate et

al. (2019)

Unsupervised machine

learning for software defect

prediction

Supervised Learning May not account for all

types of software bugs

[11] Caulo et al.

(2019)

Taxonomy of metrics for

software fault prediction

Taxonomy Analysis May not cover all

existing metrics

[12] Moon et al.

(2022)

Compact feature hashing

for malware detection

Feature Hashing May affect detection

accuracy for some

malware

[13] Y. Liu, (2022) Study effect of data

imbalance on software

defect prediction

Comparative study of

imbalanced datasets

Focuses only on

imbalance, doesn't

address other factors

[14] N. Sharma,

(2021)

Explore machine learning

and deep learning

applications

Overview of ML and

DL applications

Limited to applications,

lacks specific

implementation

[15] A. Mahmoud,

(2021)

Propose a novel

oversampling technique for

imbalanced datasets in

defect prediction

Adversarial guided

oversampling (TGT)

Oversampling might

introduce noise in

certain contexts

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 11

[16] M. Mangla,

(2021)

Introduce an ensemble

model for software fault

prediction

Sequential ensemble

learning

Ensemble approach can

lead to increased

computational

complexity

[17] B. Mumtaz,

(2021)

Use artificial immune

networks for feature

selection in defect

prediction

Artificial immune

network for feature

selection

May not scale well with

very large datasets

[18] M.

Mustaqeem,

(2021)

Combine PCA and SVM for

software defect detection

PCA + SVM PCA may lose critical

information due to

dimensionality

reduction

[19] A. Rahim,

(2021)

Use Naive Bayes classifier

for software defect

prediction

Naive Bayes classifier Simple classifier might

not capture complex

patterns

[20] M. Nevendra,

(2021)

Apply deep learning for

software defect prediction

Deep learning

techniques

DL require large

datasets and high

computational resources

[21] E. M. Rey,

(2021)

Integrate iterative machine

teaching and active learning

into ML loops

Machine teaching +

Active learning

Active learning may not

always find the most

informative data points

[22] S. K. Rath,

(2022)

Perform a comparative

analysis of software

reliability prediction models

Various software

reliability models

Doesn't provide a

comprehensive

approach to feature

selection

[23] A. S.

Mohamad

(2022)

Develop an SVM and ELM-

based prediction system for

software defects

SVM + ELM May face challenges

with noisy data or

outliers

[24] K. Sofian,

(2022)

Apply SSO for fault

prediction

SSO Optimization approach

might struggle with

local minima

[25] D.

Mohammad et

al. (2022)

Develop a machine

learning-driven software

defect prediction system

Machine learning and

intelligent automation

High computational

costs for integrating

automation

[26] Choudhary et Empirical analysis of

change metrics for software

Change metrics Limited focus on

generalizability across

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 12

al., 2018 fault prediction varied datasets

[27] Kaur & Kaur,

2018

Evaluate classification

algorithms for fault

prediction in open-source

projects

Classification

algorithms

Lack of exploration into

ensemble methods

[28] Manjula &

Florence, 2018

Develop a hybrid approach

for software defect

prediction using machine

learning with optimization

Hybrid machine

learning and

optimization

Computational

complexity and

scalability issues

[29] Rhmann,

2018b

Cross-project defect

prediction using hybrid

search-based algorithms

Hybrid search-based

algorithms

Limited applicability to

large-scale datasets

[30] Rhmann,

2018a

Application of hybrid

search-based algorithms for

software defect prediction

Hybrid search-based

algorithms

Performance variability

depending on the dataset

[31] Sharma &

Chandra, 2018

Comparative analysis of

soft computing techniques

in fault prediction model

development

Soft computing

techniques

Limited insight into

real-world project

scenarios

[32] Raschka &

Mirjalili, 2017

Develop frameworks for

machine learning-based

defect prediction

Python-based machine

learning approaches

Narrow focus on

selected machine

learning algorithms

[33] Yang et al.,

2015

Learning-to-rank approach

to software defect

prediction

Learning-to-rank Focus limited to ranking

rather than classification

[34] Erturk &

Sezer, 2015

Compare soft computing

methods for fault prediction

Soft computing

methods

No consideration of

hybrid or ensemble

approaches

[35] Fenton &

Bieman, 2015

Provide a rigorous approach

to software metrics

Software metrics Lack of focus on

predictive techniques

[36] Kaur & Kaur,

2014

Evaluate machine learning

algorithms for fault

prediction

Machine learning

algorithms

Limited scope of

evaluation metrics

[37] Nam et al.,

2013

Transfer defect learning for

software fault prediction

Transfer learning Limited applicability

across dissimilar

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 13

datasets

[38] Zhou et al.,

2010

Assess the predictive

capability of complexity

metrics in object-oriented

systems

Complexity metrics Limited evaluation of

real-time scenarios

[39] Moser et al.,

2008

Compare change metrics

and static code attributes for

defect prediction

Change metrics and

static code attributes

Lack of integration with

advanced machine

learning techniques

[40] Kim et al.,

2008

Classify software changes

as clean or buggy

Classification-based

approach

No emphasis on

improving fault

detection accuracy

[41] Gondra, 2008 Apply machine learning for

software fault-proneness

prediction

Machine learning Limited generalizability

across varied software

projects

[42] Otero &

Sanchez, 2006

Develop fuzzy classifiers

using the Logitboost

algorithm

Fuzzy classifiers with

Logitboost

Computational intensity

and limited

interpretability

[43] Jesus et al.,

2004

Induction of fuzzy rule-

based classifiers with

evolutionary boosting

algorithms

Fuzzy rule-based

classifiers with

evolutionary boosting

algorithms

Scalability and

adaptability challenges

2.1 Research Gap

Considering existing research work the research gap is discussed below

1. Limited Adaptability: Traditional fault prediction approaches often rely on predefined rules or

heuristics that may not adequately adapt to the dynamic nature of modern software systems.

There is a gap in the literature regarding the adaptability of these approaches to evolving

software environments and changing user requirements.

2. Scalability Challenges: Conventional fault prediction methods may struggle to handle large-

scale software systems with numerous components and dependencies. There is a gap in

understanding how traditional approaches can scale effectively to address the complexities of

modern software architectures.

3. Lack of Predictive Accuracy: While traditional fault prediction methods have been widely

used, their predictive accuracy may be limited, particularly in identifying subtle patterns or

complex relationships between software metrics and fault occurrences. There is a gap in research

exploring novel techniques to improve the accuracy of fault prediction models.

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 14

4. Data-driven Insights: Traditional fault prediction approaches often rely on manual expertise or

historical data analysis, which may overlook valuable insights hidden within large datasets.

There is a gap in understanding how machine learning techniques can harness data-driven

insights to enhance fault prediction accuracy and effectiveness.

5. Interpretability and Explainability: Machine learning models, particularly complex ones, may

lack interpretability and explainability, making it difficult for stakeholders to trust and

understand the predictions. There is a gap in research exploring techniques to improve the

interpretability and explainability of machine learning-based fault prediction models.

6. Generalization Across Domains: Machine learning models trained on specific software datasets

may struggle to generalize across different domains or application contexts. There is a gap in

understanding how to build machine learning models that can generalize effectively to diverse

software systems and environments.

The field of fault prediction faces several gaps, including the generalization and applicability of metrics

and techniques. Khoa et al. introduced a set of software metrics in case of fault prediction, but these may

not be universally applicable across all software types. Caulo (2019) provided a taxonomy of metrics in

case of fault prediction, but it may not cover all existing metrics or their effectiveness in diverse

contexts. Youdi et al. (2023) conducted a survey on dataset quality in ML but there is a need to

understand how different dimensions of dataset quality impact fault prediction models. Sharma et al.

(2023) and Hani et al. (2023) examined ensemble and hybrid machine learning methods for defect

prediction and malware detection, but they often come with high computational costs and increased

complexity. Addressing these gaps could significantly advance the field by developing more adaptable

metrics, improving dataset quality and imbalance, along with refining ensemble and hybrid methods for

broader and more practical use.

2.2 Challenges

The software fault prediction field faces several challenges, including applicability of metrics across

different software and environments, the need for adaptable metrics, the complexity of dataset quality

and class imbalance, the need for deeper investigation into how different aspects impact fault prediction,

the high computational costs and complexity of ensemble and hybrid methods, and the need to bridge

the gap between theoretical advancements and real-world application. These challenges require

continued research and development to create versatile, efficient, and practical solutions for software

fault prediction along with related fields. By addressing these challenges, the field can continue to

advance and improve accuracy along with efficiency of software fault prediction.

3. Issues or Problem Statement

Software reliability is a significant challenge in modern software development due to increasing

complexity and scale of software systems. Traditional fault prediction methods, such as static code

analysis and rule-based systems, are limited by their reliance on historical data and predefined rules,

which may not adapt well to evolving software structures or new fault types. This results in incomplete

or inaccurate fault predictions, increasing the risk of software failures, maintenance costs, and system

downtimes. The need for more effective and adaptive solutions is evident as software systems continue

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 15

to grow in complexity and demand. Advanced methods like machine learning are needed to improve

overall software reliability.

4. Research Methodology

Improving software reliability with machine learning is an area of study that follows a well-defined

methodology with multiple important steps. Among these steps are gathering and preparing data, doing

EDA engineering features, selecting a model, training it, evaluating it, doing comparison analysis, and

finally, deploying it. The first stage involves gathering diverse datasets from various sources, ensuring

their quality through rigorous preprocessing. The second stage involves analyzing the cleaned data to

uncover patterns, relationships, and anomalies. The third stage involves feature engineering, selecting

and creating informative features to enhance model performance. The fourth stage involves selecting the

appropriate machine learning models based on problem requirements, data characteristics, and

computational complexity. The fifth stage involves model training, dividing the dataset into training and

testing sets, and optimizing model. The sixth stage involves model evaluation, comparing the model's

performance with traditional methods. The final stage involves deploying the validated model into

operational environments, integrating it into existing software development workflows or fault

management systems.

Fig 3 Research methodology

Deployment

Integrate Model Real-time Prediction

Comparative Analysis

Evaluate Traditional Methods Compare Performance Draw Conclusions

Model Evaluation

Evaluate Model

Model Training

Split Data Train Model Optimize Model

Model Selection

Select Model

Feature Engineering (FE)

Select Features Transform Features Create New Features

Exploratory Data Analysis (EDA)

Visualize Data Analyze Data Detect Outliers

Data Collection & Preparation

Gather Data Transform Data Clean Data

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 16

5. Need of Research

The complexity and criticality of modern software systems necessitate research into enhancing software

reliability through machine learning. Traditional fault prediction approaches, based on static rules and

historical data, are inadequate for accurately predicting faults and ensuring software reliability. Machine

learning offers advanced analytical capabilities to process large data volumes, identify complex patterns,

and provide more accurate fault predictions. Research in this area is crucial for developing effective

machine learning-based models that address limitations, improve fault detection accuracy, and enhance

software reliability. This advancement can set new industry standards, reduce downtime, and increase

software system robustness, benefiting users and organizations.

6. Conclusion

Machine learning is poised to revolutionize software reliability by enhancing models that can handle

diverse and dynamic data sources. As software systems grow, there's a need for sophisticated models

that can adapt to new fault types and software environments. Integrating machine learning with

emerging technologies like edge computing and blockchain could offer real-time fault detection and

prevention. Deep learning techniques, transfer learning, and automated machine learning could improve

model performance and reduce manual tuning. Research into interpretability and transparency of

machine learning models is crucial for trust and understanding decision-making processes. By advancing

these areas, future research can drive significant improvements in software reliability, set industry

standards, and contribute to more resilient and dependable software systems.

References

1. P. Khoa, O. Emmanuel and A. Mehmet (2023, March), "Error-Type-A Novel Set of Software

Metrics for Software Fault Prediction," IEEE Access, vol. 11, pp. 30562-30574.

2. G. Youdi, L. Guangzhen, X. Yanzhi, L. Rui and M. Lingzhong (2023, June), "A survey on

dataset quality in Machine Learning." Information and Software Technology, vol. 162, pp. 1-11.

3. A. Elmishali and M. Kalech (2023), "Issue-Driven Features for Software Fault Prediction,"

Informatica and Software Technology, vol. 155, pp.1-8.

4. T. Sharma, A. Jatain, S. Bhaskar and K. Pabreja (2023), "Ensemble Machine Learning

Paradigms in Software Defect Prediction," Procedia Computer Science, vol. 218, pp. 199-209.

5. S. Pandey and K. Kumar (2023), "Software Fault Prediction for Imbalance Data: A Survey on

Recent Developments," Procedia Computer Science, vol. 218, pp. 1815-1824.

6. S. P. Koyyada and T. P. Singh (2023), "A multi stage to handle class imbalance: An ensemble

method," Procedia Computer Science, vol. 218, pp. 1815-2666-2674.

7. A. Hani, M. Y. Qussai and A. A. B. Mohammed (2023), "A Comparative Analysis of Machine

Learning Algorithms for Android Malware Detection," Procedia Computer Science, vol. 220, pp.

763-768.

8. Batool and T. A. Khan (2023), "Software Fault Prediction Using Deep Learning Techniques,"

Software Quality Journal, pp. 1-16.

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 17

9. R. Chennappan and V. (2023), "An automated software failure prediction technique using hybrid

machine learning algorithms," Journal of Engineering Research, vol. 11, pp. 1-5

10. Immaculate, S. D., Begam, M. F., & Floramary, M. (2019, March). “Software bug prediction

using supervised machine learning algorithms”, In 2019 International conference on data science

and communication (IconDSC) ,pp. 1-7. IEEE.

11. Caulo, M. (2019, August). A taxonomy of metrics for software fault prediction. In Proceedings

of the 2019 27th ACM joint meeting on European software engineering conference and

symposium on the foundations of software engineering (pp. 1144-1147).

12. D. Moon, 1. Lee and M. Yoon (2022), "Compact festure hashing for machine learning based

malware detection," ICT Express, vol. 8, pp. 124-129.

13. Y. Liu, W. Zhang, G. Qin and 1. Zhao (2022), "A comparative study on the effect of data

imbalance on software defect prediction," Procedia Computer Science, vol. 214, pp. 1606-1616.

14. N. Sharma, R. Sharma and N. Jindal (2021, January), "Machine Learning and Deep Learning

Applications-A Vision", Global Transitions Proceedings, vol. 2, pp. 24-28.

15. A. Mahmoud, A. El-Kilany, F. Ali and S. Mazen (2021, February), "TGT: A Novel Adversarial

Guided Oversampling Technique for Handling Imbalanced Datasets", Egyptian Informatics

Journal, vol. 22, pp. 433-438.

16. M. Mangla, N. Sharma, and S. N. Mohanty (2021, March), "A sequential ensemble model for

software fault prediction," Innovations Systems Software Engineering, vol. 18, pp. 301-308.

17. B. Mumtaz, S. Kanwal, S. Alamri and F. Khan (2021, April), "Feature Selection Using Artificial

Immune Network: An Approach for Software Defect Prediction," btelligent Automation & Soft

Computing, vol. 29, pp. 669-684.

18. M. Mustaqeem and M. Saqib (2021, April), "Principal component-based support vector machine

(PC- SVM): a hybrid technique for software defect detection," Cluster Computing, vol. 24, pp.

2581-2595.

19. A. Rahim, Z. Hayat, A. Rahim, M. A. Rahim and M. Abbas (2021, November), "Software Defect

Prediction with Nalve Bayes Classifier," 2021 International Bhurban Conference on Applied

Sciences and Technologies (IBCAST), Islamabad, Pakistan, pp. 293-297.

20. M. Nevendra and P. Singh (2021, November), "Software Defect Prediction using Deep

Learning." Acte Polytechnica Hungarica, vol. 18, no. 10, pp. 173-189.

21. E. M. Rey, D. A. Rios and A. B. Lozano (2021), "Integrating Iterative Machine Teaching and

Active Learning into the Machine Learning Loop," Procedia Computer Science, vol. 192, pp.

553-562

22. S. K. Rath, M. Sahu, S. K. Bisoy, S. P. Das and M. Sain (2022, August), "A Comparative

Analysis of reliability Prediction Model," Electronics, vol. 11.

23. SVM and ELM Classification on Software [28] A. S. Mohamad (2022, October), "Machine

Learning Empowered Software Prediction System," Wani Journal of Computer and Mathematic

Science, vol 1, no. 3, pp. 54-64.

24. K. Sofian, A. Salwani, A. A. B. Mohammed and A. Mohammed (2022), "Salp swarm optimizer

for modeling the software fault prediction problem," Journal of King Saud University-Computer

and Information Sciences, vol. 34, pp. 3365-3378.

25. D. Mohammad et al. (2022), "Machine Learning Empowered Software Defect Prediction System

Activate Windows Intelligent Automation & Soft Computing, vol. 31, pp. 1287-1300.

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 ● Website: www.aijfr.com ● Email: editor@aijfr.com

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 18

26. Choudhary, G.R., Kumar, S., Kumar, K., Mishra, A., Catal, C., 2018. Empirical analysis of

change metrics for software fault prediction. Comput. Electr. Eng., Elsevier 67, pp. 15–24.

27. Kaur, A., Kaur, I., 2018. An empirical evaluation of classification algorithms for fault prediction

in open source projects. J. King Saud Univ.-Comput. Inf. Sci., Elsevier 30, pp. 2–17.

28. Manjula, C., Florence, L., 2018. Hybrid approach for software defect prediction using machine

learning with optimization technique. Int. J. Comput. Inf. Eng., World Acad. Sci. Eng. Technol.

12 (1), pp. 28–32.

29. Rhmann, W., 2018b. Cross project defect prediction using hybrid search based algorithms. Int. J.

Inf. Technol., Springer,. https://doi.org/10.1007/s41870-018-0244-7.

30. Rhmann, W., 2018a. Application of hybrid search based algorithms for software defect

prediction. Int. J. Modern Educ. Comput. Sci., MECS 10 (4),pp. 51–62.

https://doi.org/10.5815/ijmecs.2018.04.07.

31. Sharma, D., Chandra, P., 2018. A comparative analysis of soft computing techniques in software

fault prediction model development. Int. J. Inf. Technol., Springer pp. 1–10.

https://doi.org/10.1007/s41870-018-0211-3.

32. Raschka, S., Mirjalili, V., 2017. Python Machine Learning. Published by Packt Publishing Ltd.

Malhotra, R., 2016. An empirical framework for defect prediction using machine learning

techniques with Android software. Appl. Soft Comput., Elsevier 49 (C),pp. 1034–1050.

33. Yang, X., Tang, K., Yao, X., 2015. A learning-to-rank approach to software defect prediction.

IEEE Trans. Reliab. 64 (1), pp. 234–246.

34. Erturk, E., Sezer, E.A., 2015. A comparison of some soft computing methods for software fault

prediction. Expert Syst. Appl., Elsevier 42 (4), pp. 1872–1879.

35. Fenton, N., Bieman, J., 2015. Software Metrics. A Rigorous and Practical Approach. CRC Press,

Taylor and Francis group.

36. Kaur, A., Kaur, I., 2014. Empirical evaluation of machine learning algorithms for fault

prediction. LNSE Lecture Notes Software Eng. 2 (2), pp. 176–180.

37. Nam, J., Pan, S.J., Kim, S., 2013. Transfer defect learning. Proc. of Int’l Conf. on Softw.Eng.

(ICSE’13), pp. 382–391.

38. Zhou, Y., Xu, B., Leung, H., 2010. On the ability of complexity metrics to predict fault-prone

classes in object-oriented systems. J. Syst. Softw. 83, pp. 660–674.

39. Moser, R., Succi, Pedrycz W., 2008. A Comparative Analysis of the Efficiency of Change

Metrics and Static Code Attributes for Defect Prediction May 10–18. ICSE’08, Leipzig,

Germany, pp. 181–190.

40. Kim, S., Whitehead, E.J., Zhang, Y., 2008. Classifying software changes: clean or buggy. IEEE

Trans. Softw. Eng. 4 (2),pp. 181–196.

41. Gondra, I., 2008. Applying machine learning to software fault-proneness prediction. J. Syst.

Softw. 81, pp. 186–195.

42. Otero, J., Sanchez, L., 2006. Induction of descriptive fuzzy classifiers with the Logitboost

algorithm. Soft Comput., Springer 10, pp. 825–835.

43. Jesus, M.J., Hoffmann, F., Navascues, L.J., Sunchez, L., 2004. Induction of fuzzy-rulebased

classifiers with evolutionary boosting algorithms. IEEE Trans. Fuzzy Syst. 12 (3), pp. 296–308.

http://www.aijfr.com/

