Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

Comparison Between Machine Learning Based
Models and Traditional Fault Prediction
Approaches for Upgrading Software Reliability

Dinesh Kumar?, Dr. Saurabh Charaya?

'Research Scholar, Department of Computer Science and Applications,
Om Sterling Global University, Hisar, India
2Professor, School of Engineering and Technology,
Om Sterling Global University, Hisar, India

Abstract

Maintaining high industry standards is heavily dependent on software stability, which in turn affects
product quality, customer happiness, and operational efficiency. Although they have their uses,
traditional failure prediction methods aren't always up to snuff when it comes to today's complex and
ever-changing software systems. In this study, Conventional research work related to fault prediction
and machine learning has been discussed. Organizations can reduce maintenance costs, minimize
downtime, and improve overall software quality by proactively addressing reliability issues through the
integration of this paradigm into the software development lifecycle. Compared to more conventional
methods of fault prediction, the ML-based approach significantly outperforms them in terms of
prediction accuracy, flexibility, and scalability, according to empirical assessments. By laying out a solid
plan for improving software reliability, this study advances the field and establishes new standards for
the business.

Keywords: Software Reliability, Fault Prediction, Machine Learning, Industry Standards, Software
Quality

1. Introduction

Ensuring software system stability is critical in today's fast-paced software development environment to
meet user expectations and keep industry standards high [1]. Despite their usefulness, traditional fault
prediction methods frequently fail to handle the intricacies and ever-changing nature of contemporary
software, resulting in incorrect forecasts and heightened maintenance requirements [2, 3]. A more
sophisticated and accurate method of defect prediction is desperately needed due to the increasing
complexity of software systems [4]. An attractive alternative is machine learning (ML), which can
examine massive datasets, identify complex patterns, and make better predictions of possible software
errors. In order to improve software dependability, this work presents an ML-based model that
outperforms conventional methods of failure prediction [5]. Reduced system downtime, decreased

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 1

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

maintenance costs, and a new industry standard for software quality are all goals of the proposed
approach, which seeks to increase the accuracy of defect forecasts by utilizing the strengths of machine
learning [6].

1.1 Background

The software industry has long struggled with the problem of guaranteeing program reliability, since
even small errors can cause huge problems with operations, money, and reputation. Anticipating and
reducing software errors has traditionally been accomplished through the use of methods like static code
analysis, expert-based rule systems, and historical fault data analysis [7]. But contemporary software
systems are notoriously difficult to adjust to, what with their huge codebases, frequent upgrades, and
varied operating conditions. These more conventional methods' shortcomings have brought attention to
the necessity for cutting-edge ways that can manage the complex patterns and massive datasets common
in modern software development [8]. Machine learning's (ML) capacity to adapt and get better with
experience has made it a hot commodity as a technique to increase the accuracy of defect predictions [9].
There is hope for ML-based models as an alternative to traditional defect prediction methods; these
models have the ability to analyze large software datasets and find patterns that previous methods might
miss, therefore increasing software reliability [10]. This movement towards defect prediction powered
by ML is reflective of a larger industry trend towards data-driven approaches to solve complex problems
and improve software quality [11].

1.2 Software Reliability

Software reliability, which measures the probability of a system functioning without failure for a set
duration under specific circumstances, is an essential component of software quality. As a result,
software engineers place a premium on it because of the impact it has on user confidence, operational
efficiency, and the bottom line [12]. In today's fast-paced and immensely competitive technology world,
dependable software is crucial because it guarantees continuous performance, prevents unexpected
disruptions, and decreases the need for frequent maintenance [13]. Historically, techniques such as static
code analysis, expert opinion, and historical data analysis have been used to achieve high software
reliability by detecting and fixing possible defects early in the development process. Traditional methods
of defect prediction in software systems typically fail to keep up with the ever-changing and
interdependent nature of modern software systems [14]. Machine learning and other advanced prediction
algorithms can sift through mountains of data, spot minute trends, and produce faster, more accurate
fault forecasts, all of which are necessary for improving software reliability. Businesses may raise the
bar for software reliability and performance by incorporating machine learning into defect prediction
processes, which in turn improves software quality and performance.

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 2

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

/" Product |
. Metrics

v
VN

Software

! Process = _[EE[E Project
. Metrics | RE|IabI|Ity \ Metrics

~ Techniques

Fault&
Failure
« Metrics

Fig 1 Software Reliability Measurement Techniques
1.3 Machine Learning

Machine learning (ML) is a game-changing technology that has revolutionized software engineering. It
provides robust tools to improve software development in many ways, including reliability [15].
Machine learning algorithms improve their performance over time by learning from large and
complicated datasets, in contrast to traditional methods that depend on predetermined rules and past data
[16]. Code metrics, historical bug reports, and real-time system data are just a few of the numerous
sources of information that ML can analyze to forecast possible software failures. Better and faster
predictions are possible because these algorithms can find connections and patterns that humans or older
fault prediction models can overlook. And because of their intrinsic flexibility, ML models may easily
react to different software environments, codebases, and error types. Given the rapidity with which
software systems are changed and deployed in modern development cycles, this adaptability is vital.
Incorporating machine learning (ML) fault prediction models into software development lifecycle allows
organizations to proactively handle foreseeable issues, improve software reliability, and raise industry
standards for software performance and quality [17].

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 3

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

(
Types of
Machine
Learning
I
| I : :
N
. . Semi Reinforcement
Supervised Unsupervised Supervised Learnin
Learning g

Fig 2 Types of Machine Learning
1.4 Traditional Fault Prediction

Software dependability has traditionally relied on traditional fault prediction methods, which use
approaches like static code analysis, expert-based rule systems, and historical fault data investigation, to
a certain extent [18]. Many methods exist for predicting the probability of software errors, but the most
common ones include searching source code for patterns of known defects, using rules established from
previous experiences, or making use of statistical models. The complexity and dynamism of today's
software systems are outpacing the effectiveness of these solutions, which have proved useful to a
certain degree [19]. Since software codebases are dynamic and run in a variety of situations, traditional
methods often fall short since they rely on static rules and historical data. On top of that, these methods
aren't always accurate, particularly when faced with defects that weren't there in earlier datasets.
Therefore, high software reliability criteria in today's rapidly evolving technological landscape may be
unattainable with the help of conventional fault prediction approaches due to their lack of accuracy and
flexibility [20]. The need to find better ways to improve software reliability has prompted research into
more sophisticated approaches like machine learning, which can make better failure predictions [21].

1.5 Machine Learning for Software Reliability

Machine learning (ML) has emerged as a critical tool for improving software dependability, surpassing
the shortcomings of conventional fault prediction techniques [22]. Machine learning models have the
ability to learn from vast and varied datasets in real-time, revealing intricate patterns and correlations
that humans could overlook. This is in contrast to traditional methods that frequently depend on static
rules and past data. When it comes to software reliability, ML is used to provide better defect predictions
by examining a variety of inputs like code metrics, bug history, and real-time performance
measurements [23]. These models excel at learning from new data to enhance their predictions over
time, adapting to dynamic software environments. With the use of ML, enterprises may improve the
reliability of their software systems by detecting possible issues earlier in the software development
lifecycle, reducing the occurrence of undetected faults, and eliminating them altogether. Because of this,

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 4

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

software becomes more reliable, which in turn reduces maintenance costs, increases user satisfaction,
and enhances software quality and robustness, all of which help to raise industry standards.

1.6 Significance of research

Efficacious machine learning-based models have the ability to improve software dependability, which is
important since it might solve the problems with current defect prediction methods and establish new
benchmarks for the industry. Modern software is complicated and constantly evolving, making
traditional solutions that depend on static rules and past data ineffective [24]. An effective substitute is
machine learning, which uses sophisticated algorithms to sift through varied and expansive datasets, spot
intricate patterns, and adjust to new program settings. In turn, this skill improves software reliability and
decreases maintenance costs by allowing for more accurate and timely defect predictions. Machine
learning models that improve defect detection and work in tandem with current software development
methods to provide predictions and insights in real time are the focus of this study. More resilient
systems, better software quality, and happier users are the results of this study's advancements in defect
prediction, which in turn lead to better industry standards. With a more effective answer to the problems
that old methods have, this research is going to revolutionize software dependability management.

1.7 Motivation of research

The increasing requirement for very dependable software in sectors where even small mistakes can have
major ramifications, along with the increasing complexity of contemporary software systems, is driving
this research. Despite its worth, traditional defect prediction methods are falling short in handling the
complexities of modern software environments. As a result, there are more and more dependability gaps
and maintenance expenses are going up. More sophisticated, precise, and adaptable fault prediction
systems are urgently required since software is integral to every aspect of modern life, from corporate
processes to consumer goods [25]. To tackle these issues, this study investigates how machine learning
(ML) might improve software dependability. Improved software quality, fewer system failures, and
higher industry standards can be achieved by using ML's capacity to handle massive amounts of data
and reveal hidden patterns to create a defect prediction model. The end goal is to deliver a solid
foundation that can handle the present and future needs of software reliability while also establishing a
new standard for software engineering.

2. Literature review

A new set of software metrics, Erme-type software metrics (ESM), was introduced by P. Khoa et al. in
2023. ESM gives prediction models information on patterns of various Java runtime errors. The most
common lav runtime issues, including Index Out of Bounds Exception, Null Pointer Exception, and
Class Cast Exception, are detailed in the ESM values. The proposed Error-type software metrics did, in
fact, greatly enhance the accuracy with which machine learning models predicted the likelihood of
errors. [1]

In their 2023 article, G. Youdi et al. present a thorough analysis of dataset quality. This presents a
thorough methodology for evaluating quality, including a framework for evaluating datasets using

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 5

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

dimensions and metrics, as well as methods for computing quality measures and assessment models. The
overall advancements in evaluating dataset quality are emphasized. [2]

A. Elmishali et al. built failure prediction models in 2023 using software measurements as features. They
introduced a new paradigm for building features called Issue-Driven features, which integrate software
metrics with requirements information. An analysis of 86 open-source projects reveals that, compared to
state-of-the-art features, Issue-Driven features outperform them by 6% to 13% in terms of AUC. [3]

Ensemble Machine Learning handles feature irrelevance, missing data, and uneven distribution between
defective and now faulty classes. T. Sharma et al. demonstrated this in 2023. The performance of defect
prediction is also shown to have been improved. The writers have made an effort to understand the
patterns, techniques, and dataset that academics use to find software problems. For the purpose of
software defect prediction, this article examines all ensemble-based machine learning methods that have
been created between 2018 and 2021. [4]

S. Pandey et al. (2023) reviewed state-of-the-art algorithms for software failure prediction, with an
emphasis on problems with class imbalance. In order to help the researcher choose the most effective
methods for software failure prediction, we provide a comparative presentation of several datasets and
algorithms. Further observation: SMOTE is the data sampling technique most often employed to address
data quality issues. [5]

Made from samples of the majority and bound with samples of the minority, these are called Manually
Disjoint Data Sets (MDS). Ensemble models were generated by applying a collection of diverse machine
learning methods to the bound nut-samples. When using a double-voting procedure, ensembles of
mutually disjoint data sets prioritize minority samples. On average, this strategy improves recall by
13.72 percent on test data, compared to just 3 percent on train data. [6]

In 2023, the effectiveness of various machine learning algorithms in identifying malware on Android
was examined by A. Hani et al. To get the highest level of accuracy, it utilizes PCA, normalizes the
numerical features, and the Synthetic Minority Over-sampling Technique (SMOTE). To detect and
categorize families of android malware, a light GBM model is suggested. Based on the results, the Light
GBM model outperforms the other techniques that were tested in terms of accuracy. Light GBM
achieves an F-1 score of 95.47 percent. [7]

Software defect prediction using deep learning algorithms was the goal of Batool et al. in 2023. The
trials employ RBFN, BILSTM, and LSTM, three deep learning algorithms. In terms of accuracy, the
LSTM algorithm achieves 93.53% and the BILSTM algorithm 93.75%, respectively, which is greater
performance. Nonetheless, RBFN achieves an accuracy of 82.58%. While LSTM and BILSTM are both
fast algorithms, RBFN outperforms them by a significant margin. [8]

An effective method for predicting software failures using hybrid machine learning techniques was
presented by R. Chennappan et al. in 2023. The first step is to optimize the dataset's features using a
Genetic Algorithm (GA), which allows for feature selection with a better fitness function. Once the best
characteristics have been chosen, a classification approach called the Decision Tree (DT) algorithm is
employed to process them. [9]

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 6

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

S. D. Immaculate and colleagues (2019) In order to improve speed, dependability, and quality, software
engineers are increasingly turning to Machine Learning methods for bug prediction. This method
constructs models and makes bug predictions from past data using Logistic regression, Naive Bayes, and
Decision Tree classifiers. The models are designed to operate effectively in all settings using random
forest ensemble classifiers and K-Fold cross validation [10].

Software fault prediction (SFP) is a method developed by Caulo, M. et al. (2019) that employs software
metrics to generate predictive models. These models are based on machine learning and statistical
approaches. For metrics to be organized and communicated consistently, a taxonomy is required. A
global grasp of metrics—acronyms, full names, descriptions, and research articles—is being sought for,
and this doctoral symposium paper details current efforts to build such a taxonomy [11].

A new method for improving malware detection systems using a feature hashing methodology is
presented by Moon et al. (2022). By studying how to decrease the dimensionality of feature sets while
maintaining detection accuracy, they hope to make machine learning-based malware detection more
efficient. Significant gains in computational efficiency and accuracy are demonstrated by the suggested
method, which could have far-reaching ramifications for cybersecurity.[12]

Y. Liu, et. al. (2022) conduct a comparative study to understand the impact of data imbalance on
software defect prediction. Their findings highlight how imbalanced datasets can affect the performance
of defect prediction models, stressing the importance of addressing this issue to enhance the accuracy
and reliability of the predictions. They suggest potential strategies for mitigating this challenge in
software defect prediction tasks [13].

N. Sharma, et al. (2021) explores various applications of machine learning and deep learning in different
domains. The authors present a vision for the future of these technologies, emphasizing their growing
significance in various fields such as healthcare, finance, and software engineering. They argue that
machine learning and deep learning models can greatly improve decision-making and automation
capabilities across diverse sectors [14].

A. El-Kilany, et al. (2021) propose a novel adversarial-guided oversampling technique (TGT) to tackle
the issue of imbalanced datasets in machine learning tasks, specifically in the context of software defect
prediction. This technique aims to generate synthetic data points that help balance the class distribution,
thereby improving the overall performance of machine learning models in detecting software defects
[15].

M. Mangla, (2021) introduce a sequential ensemble model designed to improve software fault
prediction. By combining multiple models in a sequence, the ensemble approach aims to reduce errors
and enhance prediction accuracy. This work contributes to the field by providing a more robust method
for predicting software defects using machine learning techniques [16].

B. Mumtaz, et al. (2021) focuses on feature selection using an artificial immune network approach for
software defect prediction. The authors argue that selecting the right features is crucial to enhancing the
performance of defect prediction models. Their work demonstrates the effectiveness of artificial immune
networks in selecting relevant features from large and complex datasets [17].

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 7

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

M. Mustageem (2021) presents a hybrid technique for software defect detection that combines Principal
Component Analysis (PCA) with Support Vector Machine (SVM). The authors claim that the integration
of PCA for dimensionality reduction and SVVM for classification results in a more accurate and efficient
software defect detection model, reducing the complexity of the prediction task [18].

A. Rahim, et al. (2021) explore the use of the Naive Bayes classifier for software defect prediction. They
evaluate the effectiveness of this simple yet powerful machine learning algorithm in predicting defects,
comparing it with other more complex models. Their results indicate that Naive Bayes can be a viable
option for software defect prediction, particularly when dealing with large datasets [19].

M. Nevendra (2021) examine of deep learning techniques for software defect prediction. The authors
argue that deep learning, with its ability to automatically extract features from raw data, holds significant
promise for improving the accuracy of defect prediction models. Their findings suggest that deep
learning models outperform traditional machine learning techniques in terms of prediction accuracy
[20].

E. M. Rey, (2021) integrated iterative machine teaching and active learning into the machine learning
loop. The authors propose that these techniques can be used to enhance the learning process by actively
selecting the most informative data points and iterating over them to improve model performance. Their
approach aims to make machine learning systems more efficient and accurate by reducing the number of
required labeled samples [21].

S. K. Rath, (2022) present a comparative analysis of reliability prediction models in software
engineering. They compare various methods for predicting software reliability, focusing on their
accuracy and applicability to different types of software systems. Their study contributes to the field by
providing insights into the strengths and weaknesses of different reliability prediction techniques [22].

A. S. Mohamad (2022) introduces a machine learning-empowered softwion system that integrates
Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classification techniques. The
study compares the performance of these models for predicting software defects, demonstrating the
potential of machine learning techniques in improving defect prediction accuracy [23].

K. Sofian, et al. (2022) proposes the Salp Swarm Optimizer (SSO) to model the software fault prediction
problem. The authors demonstrate the effectiveness of this metaheuristic optimization algorithm in
improving the accuracy of software fault prediction models, suggesting that SSO can be a valuable tool
for tackling complex prediction tasks [24].

D. Mohammad et al. (2022) discusses the development of a machine learning-powered software defect
prediction system, focusing on the integration of intelligent automation techniques to enhance the
prediction accuracy. The authors propose a system that leverages machine learning models to predict
software defects more efficiently and accurately, integrating various automation methods to streamline
the process [25]. The field of software defect prediction has seen significant advancements through the
application of various machine learning and optimization techniques. Research efforts have been
directed toward understanding and improving the reliability of software by predicting fault-prone
modules. Choudhary et al. (2018) [26] conducted an empirical analysis of change metrics and

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 8

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

highlighted their effectiveness in software fault prediction, emphasizing the importance of dynamic
change data over static attributes. Similarly, Kaur (2018) [27] evaluated multiple classification
algorithms, providing insights into their applicability for fault prediction in open-source projects.

Manjula and Florence (2018) [28] introduced a hybrid machine learning approach combined with
optimization techniques, demonstrating improved prediction accuracy and reduced false positives.
Hybrid methodologies were further explored by Rhmann (2018b) [29], (2018a) [30], who applied hybrid
search-based algorithms for cross-project defect prediction, addressing the challenges of dataset
diversity and feature variance. Sharma and Chandra (2018) [31] presented a comparative analysis of soft
computing techniques, underscoring their relevance in developing efficient fault prediction models.

The role of machine learning techniques, such as those outlined by Raschka and Mirjalili (2017) [32],
has been pivotal in advancing defect prediction frameworks. Malhotra (2017) [32] proposed a
framework for defect prediction in Android software using empirical approaches, while Yang et al.
(2015) [33] employed a learning-to-rank methodology for prioritizing defect-prone modules, enhancing
prediction reliability. Studies by Erturk and Sezer (2015) [34] and Zhou et al. (2010) [38] have
compared complexity metrics and soft computing methods, revealing their varying efficacy across
different project types.

Foundational works, including those by Moser et al. (2008) [39] and Kim et al. (2008) [40], have
examined the efficiency of change metrics and static code attributes, respectively, providing benchmarks
for subsequent research. Additionally, the application of fuzzy rule-based classifiers (2006, 2004) [42,
43] has been explored as a means to handle uncertainty in defect prediction tasks, showcasing the
evolution of methodologies from deterministic to probabilistic approaches.

These studies collectively highlight the growing sophistication in software defect prediction, with a shift
toward hybrid and optimization-driven approaches to enhance model performance and applicability in
diverse software development environments.

Table 1 Literature survey

Ref Author / Objective Technique Limitation
Year

[1] | Khoa et al.|Propose a novel set of | Error-Type Metrics May not be applicable to

(2023) software metrics for fault all software types
prediction

[2] | Youdi et al. | Survey on dataset quality in | Literature Review Limited to quality
(2023) ML aspects only

[3] | Elmishali et al. | Investigate issue-driven | Issue-Driven Features | Focuses on specific
(2023) features for fault prediction issues, may not

generalize

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 9

http://www.aijfr.com/

E-ISSN: 3048-7641

Advanced International Journal for Research (AIJFR)

e Website: www.aijfr.com e Email: editor@aijfr.com

[4] | Sharma et al. | Explore ensemble ML | Ensemble Methods May have high
(2023) paradigms in defect computational costs
prediction
[5] | Pandey et al. | Survey recent developments | Survey of Techniques | Focuses on imbalance
(2023) in fault prediction for handling only
imbalanced data
[6] | Koyyada et al. | Multi-stage approach for | Ensemble Method Complexity in model
(2023) class imbalance implementation
[7] | Hani et al. | Comparative analysis of | Comparative Analysis | Limited to Android
(2023) ML for malware detection malware
[8] | Batool et al. | Software fault prediction | Deep Learning May require extensive
(2023) using deep learning computational resources
techniques
[9] | Chennappan et | Automated software failure | Hybrid ML | Hybrid methods may
al. (2023) prediction using hybrid ML | Algorithms increase model
complexity
[10] | Immaculate et | Unsupervised machine | Supervised Learning May not account for all
al. (2019) learning for software defect types of software bugs
prediction
[11] | Caulo et al. | Taxonomy of metrics for | Taxonomy Analysis May not cover all
(2019) software fault prediction existing metrics
[12] | Moon et al. | Compact feature hashing | Feature Hashing May affect detection
(2022) for malware detection accuracy for some
malware
[13] | Y. Liu, (2022) | Study effect of data | Comparative study of | Focuses only on
imbalance on software | imbalanced datasets imbalance, doesn't
defect prediction address other factors
[14] | N. Sharma, | Explore machine learning | Overview of ML and | Limited to applications,
(2021) and deep learning | DL applications lacks specific
applications implementation
[15] | A. Mahmoud, | Propose a novel | Adversarial guided | Oversampling might
(2021) oversampling technique for | oversampling (TGT) introduce noise in
imbalanced datasets in certain contexts
defect prediction
AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 10

http://www.aijfr.com/

E-ISSN: 3048-7641

Advanced International Journal for Research (AIJFR)

e Website: www.aijfr.com e Email: editor@aijfr.com

[16] | M. Mangla, | Introduce an ensemble | Sequential ~ ensemble | Ensemble approach can
(2021) model for software fault | learning lead to increased
prediction computational
complexity
[17] | B. Mumtaz, | Use artificial immune | Artificial immune | May not scale well with
(2021) networks for feature | network for feature | very large datasets
selection in defect | selection
prediction
[18] | M. Combine PCA and SVM for | PCA + SVM PCA may lose critical
Mustageem, software defect detection information due to
(2021) dimensionality
reduction
[19] | A. Rahim, | Use Naive Bayes classifier | Naive Bayes classifier | Simple classifier might
(2021) for software defect not capture complex
prediction patterns
[20] | M. Nevendra, | Apply deep learning for | Deep learning | DL require large
(2021) software defect prediction techniques datasets and high
computational resources
[21] | E. M. Rey, | Integrate iterative machine | Machine teaching + | Active learning may not
(2021) teaching and active learning | Active learning always find the most
into ML loops informative data points
[22] | S. K. Rath, | Perform a comparative | Various software | Doesn't provide a
(2022) analysis of software | reliability models comprehensive
reliability prediction models approach to feature
selection
[23] | A. S. | Develop an SVM and ELM- | SVM + ELM May face challenges
Mohamad based prediction system for with noisy data or
(2022) software defects outliers
[24] | K. Sofian, | Apply SSO for fault | SSO Optimization approach
(2022) prediction might struggle with
local minima
[25] | D. Develop a machine | Machine learning and | High computational
Mohammad et | learning-driven software | intelligent automation | costs for integrating
al. (2022) defect prediction system automation
[26] | Choudhary et | Empirical analysis of | Change metrics Limited focus on
change metrics for software generalizability — across
AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 11

http://www.aijfr.com/

E-ISSN: 3048-7641

Advanced International Journal for Research (AIJFR)

e Website: www.aijfr.com e Email: editor@aijfr.com

al., 2018 fault prediction varied datasets
[27] | Kaur & Kaur, | Evaluate classification | Classification Lack of exploration into
2018 algorithms for fault | algorithms ensemble methods
prediction in open-source
projects
[28] | Manjula & | Develop a hybrid approach | Hybrid machine | Computational
Florence, 2018 | for software defect | learning and | complexity and
prediction using machine | optimization scalability issues
learning with optimization
[29] | Rhmann, Cross-project defect | Hybrid search-based | Limited applicability to
2018b prediction using hybrid | algorithms large-scale datasets
search-based algorithms
[30] | Rhmann, Application of hybrid | Hybrid search-based | Performance variability
2018a search-based algorithms for | algorithms depending on the dataset
software defect prediction
[31] | Sharma & | Comparative analysis of | Soft computing | Limited insight into
Chandra, 2018 | soft computing techniques | techniques real-world project
in fault prediction model scenarios
development
[32] | Raschka & | Develop frameworks for | Python-based machine | Narrow focus on
Mirjalili, 2017 | machine learning-based | learning approaches selected machine
defect prediction learning algorithms
[33] | Yang et al., | Learning-to-rank approach | Learning-to-rank Focus limited to ranking
2015 to software defect rather than classification
prediction
[34] | Erturk & | Compare soft computing | Soft computing | No consideration of
Sezer, 2015 methods for fault prediction | methods hybrid or ensemble
approaches
[35] | Fenton & | Provide a rigorous approach | Software metrics Lack of focus on
Bieman, 2015 | to software metrics predictive techniques
[36] | Kaur & Kaur, | Evaluate machine learning | Machine learning | Limited scope of
2014 algorithms for fault | algorithms evaluation metrics
prediction
[37] | Nam et al., | Transfer defect learning for | Transfer learning Limited applicability
2013 software fault prediction across dissimilar
AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 12

http://www.aijfr.com/

E-ISSN: 3048-7641

Advanced International Journal for Research (AIJFR)

e Website: www.aijfr.com e Email: editor@aijfr.com

datasets
[38] | Zhou et al., | Assess the predictive | Complexity metrics Limited evaluation of
2010 capability of complexity real-time scenarios
metrics in object-oriented
systems
[39] | Moser et al., | Compare change metrics | Change metrics and | Lack of integration with
2008 and static code attributes for | static code attributes advanced machine
defect prediction learning techniques
[40] | Kim et al., | Classify software changes | Classification-based No emphasis on
2008 as clean or buggy approach improving fault
detection accuracy
[41] | Gondra, 2008 | Apply machine learning for | Machine learning Limited generalizability
software fault-proneness across varied software
prediction projects
[42] | Otero & | Develop fuzzy classifiers | Fuzzy classifiers with | Computational intensity
Sanchez, 2006 | using the Logitboost | Logitboost and limited
algorithm interpretability
[43] | Jesus et al., | Induction of fuzzy rule- | Fuzzy rule-based | Scalability and
2004 based classifiers with | classifiers with | adaptability challenges
evolutionary boosting | evolutionary boosting
algorithms algorithms

2.1 Research Gap

Considering existing research work the research gap is discussed below

1. Limited Adaptability: Traditional fault prediction approaches often rely on predefined rules or
heuristics that may not adequately adapt to the dynamic nature of modern software systems.
There is a gap in the literature regarding the adaptability of these approaches to evolving
software environments and changing user requirements.
Scalability Challenges: Conventional fault prediction methods may struggle to handle large-
scale software systems with numerous components and dependencies. There is a gap in
understanding how traditional approaches can scale effectively to address the complexities of
modern software architectures.
Lack of Predictive Accuracy: While traditional fault prediction methods have been widely
used, their predictive accuracy may be limited, particularly in identifying subtle patterns or
complex relationships between software metrics and fault occurrences. There is a gap in research
exploring novel techniques to improve the accuracy of fault prediction models.

AIJFR25052993

Volume 6, Issue 5 (September-October 2025)

13

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

4. Data-driven Insights: Traditional fault prediction approaches often rely on manual expertise or
historical data analysis, which may overlook valuable insights hidden within large datasets.
There is a gap in understanding how machine learning techniques can harness data-driven
insights to enhance fault prediction accuracy and effectiveness.

5. Interpretability and Explainability: Machine learning models, particularly complex ones, may
lack interpretability and explainability, making it difficult for stakeholders to trust and
understand the predictions. There is a gap in research exploring techniques to improve the
interpretability and explainability of machine learning-based fault prediction models.

6. Generalization Across Domains: Machine learning models trained on specific software datasets
may struggle to generalize across different domains or application contexts. There is a gap in
understanding how to build machine learning models that can generalize effectively to diverse
software systems and environments.

The field of fault prediction faces several gaps, including the generalization and applicability of metrics
and techniques. Khoa et al. introduced a set of software metrics in case of fault prediction, but these may
not be universally applicable across all software types. Caulo (2019) provided a taxonomy of metrics in
case of fault prediction, but it may not cover all existing metrics or their effectiveness in diverse
contexts. Youdi et al. (2023) conducted a survey on dataset quality in ML but there is a need to
understand how different dimensions of dataset quality impact fault prediction models. Sharma et al.
(2023) and Hani et al. (2023) examined ensemble and hybrid machine learning methods for defect
prediction and malware detection, but they often come with high computational costs and increased
complexity. Addressing these gaps could significantly advance the field by developing more adaptable
metrics, improving dataset quality and imbalance, along with refining ensemble and hybrid methods for
broader and more practical use.

2.2 Challenges

The software fault prediction field faces several challenges, including applicability of metrics across
different software and environments, the need for adaptable metrics, the complexity of dataset quality
and class imbalance, the need for deeper investigation into how different aspects impact fault prediction,
the high computational costs and complexity of ensemble and hybrid methods, and the need to bridge
the gap between theoretical advancements and real-world application. These challenges require
continued research and development to create versatile, efficient, and practical solutions for software
fault prediction along with related fields. By addressing these challenges, the field can continue to
advance and improve accuracy along with efficiency of software fault prediction.

3. Issues or Problem Statement

Software reliability is a significant challenge in modern software development due to increasing
complexity and scale of software systems. Traditional fault prediction methods, such as static code
analysis and rule-based systems, are limited by their reliance on historical data and predefined rules,
which may not adapt well to evolving software structures or new fault types. This results in incomplete
or inaccurate fault predictions, increasing the risk of software failures, maintenance costs, and system
downtimes. The need for more effective and adaptive solutions is evident as software systems continue

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 14

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

to grow in complexity and demand. Advanced methods like machine learning are needed to improve
overall software reliability.

4. Research Methodology

Improving software reliability with machine learning is an area of study that follows a well-defined
methodology with multiple important steps. Among these steps are gathering and preparing data, doing
EDA engineering features, selecting a model, training it, evaluating it, doing comparison analysis, and
finally, deploying it. The first stage involves gathering diverse datasets from various sources, ensuring
their quality through rigorous preprocessing. The second stage involves analyzing the cleaned data to
uncover patterns, relationships, and anomalies. The third stage involves feature engineering, selecting
and creating informative features to enhance model performance. The fourth stage involves selecting the
appropriate machine learning models based on problem requirements, data characteristics, and
computational complexity. The fifth stage involves model training, dividing the dataset into training and
testing sets, and optimizing model. The sixth stage involves model evaluation, comparing the model's
performance with traditional methods. The final stage involves deploying the validated model into
operational environments, integrating it into existing software development workflows or fault
management systems.

Data Collection & Preparation
Gather Data Transform Data Clean Data

Exploratory Data Analysis (EDA)
Visualize Data Analyze Data Detect Outliers

|¢

|¢

Feature Engineering (FE)
Select Features Transform Features Create New Features

Model Selection
Select Model

|¢

|¢

Model Training
Split Data Train Model Optimize Model

Model Evaluation
Evaluate Model

|¢

|¢

Comparative Analysis
Evaluate Traditional Methods Compare Performance Draw Conclusions

|¢

Deployment
Integrate Model Real-time Prediction

Fig 3 Research methodology

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 15

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

5. Need of Research

The complexity and criticality of modern software systems necessitate research into enhancing software
reliability through machine learning. Traditional fault prediction approaches, based on static rules and
historical data, are inadequate for accurately predicting faults and ensuring software reliability. Machine
learning offers advanced analytical capabilities to process large data volumes, identify complex patterns,
and provide more accurate fault predictions. Research in this area is crucial for developing effective
machine learning-based models that address limitations, improve fault detection accuracy, and enhance
software reliability. This advancement can set new industry standards, reduce downtime, and increase
software system robustness, benefiting users and organizations.

6. Conclusion

Machine learning is poised to revolutionize software reliability by enhancing models that can handle
diverse and dynamic data sources. As software systems grow, there's a need for sophisticated models
that can adapt to new fault types and software environments. Integrating machine learning with
emerging technologies like edge computing and blockchain could offer real-time fault detection and
prevention. Deep learning techniques, transfer learning, and automated machine learning could improve
model performance and reduce manual tuning. Research into interpretability and transparency of
machine learning models is crucial for trust and understanding decision-making processes. By advancing
these areas, future research can drive significant improvements in software reliability, set industry
standards, and contribute to more resilient and dependable software systems.

References

1. P. Khoa, O. Emmanuel and A. Mehmet (2023, March), "Error-Type-A Novel Set of Software
Metrics for Software Fault Prediction,” IEEE Access, vol. 11, pp. 30562-30574.

2. G. Youdi, L. Guangzhen, X. Yanzhi, L. Rui and M. Lingzhong (2023, June), "A survey on
dataset quality in Machine Learning." Information and Software Technology, vol. 162, pp. 1-11.

3. A. Elmishali and M. Kalech (2023), "Issue-Driven Features for Software Fault Prediction,”
Informatica and Software Technology, vol. 155, pp.1-8.

4. T. Sharma, A. Jatain, S. Bhaskar and K. Pabreja (2023), "Ensemble Machine Learning
Paradigms in Software Defect Prediction,” Procedia Computer Science, vol. 218, pp. 199-2009.

5. S. Pandey and K. Kumar (2023), "Software Fault Prediction for Imbalance Data: A Survey on
Recent Developments,” Procedia Computer Science, vol. 218, pp. 1815-1824.

6. S. P. Koyyada and T. P. Singh (2023), "A multi stage to handle class imbalance: An ensemble
method," Procedia Computer Science, vol. 218, pp. 1815-2666-2674.

7. A. Hani, M. Y. Qussai and A. A. B. Mohammed (2023), "A Comparative Analysis of Machine
Learning Algorithms for Android Malware Detection,"” Procedia Computer Science, vol. 220, pp.
763-768.

8. Batool and T. A. Khan (2023), "Software Fault Prediction Using Deep Learning Techniques,”
Software Quality Journal, pp. 1-16.

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 16

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

9. R. Chennappan and V. (2023), "An automated software failure prediction technique using hybrid
machine learning algorithms,” Journal of Engineering Research, vol. 11, pp. 1-5

10. Immaculate, S. D., Begam, M. F., & Floramary, M. (2019, March). “Software bug prediction
using supervised machine learning algorithms”, In 2019 International conference on data science
and communication (IconDSC) ,pp. 1-7. IEEE.

11. Caulo, M. (2019, August). A taxonomy of metrics for software fault prediction. In Proceedings
of the 2019 27th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering (pp. 1144-1147).

12. D. Moon, 1. Lee and M. Yoon (2022), "Compact festure hashing for machine learning based
malware detection,” ICT Express, vol. 8, pp. 124-129.

13.Y. Liu, W. Zhang, G. Qin and 1. Zhao (2022), "A comparative study on the effect of data
imbalance on software defect prediction,” Procedia Computer Science, vol. 214, pp. 1606-1616.

14. N. Sharma, R. Sharma and N. Jindal (2021, January), "Machine Learning and Deep Learning
Applications-A Vision", Global Transitions Proceedings, vol. 2, pp. 24-28.

15. A. Mahmoud, A. El-Kilany, F. Ali and S. Mazen (2021, February), "TGT: A Novel Adversarial
Guided Oversampling Technique for Handling Imbalanced Datasets”, Egyptian Informatics
Journal, vol. 22, pp. 433-438.

16. M. Mangla, N. Sharma, and S. N. Mohanty (2021, March), "A sequential ensemble model for
software fault prediction,” Innovations Systems Software Engineering, vol. 18, pp. 301-308.

17. B. Mumtaz, S. Kanwal, S. Alamri and F. Khan (2021, April), "Feature Selection Using Avrtificial
Immune Network: An Approach for Software Defect Prediction,” btelligent Automation & Soft
Computing, vol. 29, pp. 669-684.

18. M. Mustageem and M. Saqib (2021, April), "Principal component-based support vector machine
(PC- SVM): a hybrid technique for software defect detection,” Cluster Computing, vol. 24, pp.
2581-2595.

19. A. Rahim, Z. Hayat, A. Rahim, M. A. Rahim and M. Abbas (2021, November), "Software Defect
Prediction with Nalve Bayes Classifier,” 2021 International Bhurban Conference on Applied
Sciences and Technologies (IBCAST), Islamabad, Pakistan, pp. 293-297.

20. M. Nevendra and P. Singh (2021, November), "Software Defect Prediction using Deep
Learning." Acte Polytechnica Hungarica, vol. 18, no. 10, pp. 173-189.

21. E. M. Rey, D. A. Rios and A. B. Lozano (2021), "Integrating Iterative Machine Teaching and
Active Learning into the Machine Learning Loop," Procedia Computer Science, vol. 192, pp.
553-562

22.S. K. Rath, M. Sahu, S. K. Bisoy, S. P. Das and M. Sain (2022, August), "A Comparative
Analysis of reliability Prediction Model," Electronics, vol. 11.

23. SVM and ELM Classification on Software [28] A. S. Mohamad (2022, October), "Machine
Learning Empowered Software Prediction System,” Wani Journal of Computer and Mathematic
Science, vol 1, no. 3, pp. 54-64.

24. K. Sofian, A. Salwani, A. A. B. Mohammed and A. Mohammed (2022), "Salp swarm optimizer
for modeling the software fault prediction problem,"” Journal of King Saud University-Computer
and Information Sciences, vol. 34, pp. 3365-3378.

25. D. Mohammad et al. (2022), "Machine Learning Empowered Software Defect Prediction System
Activate Windows Intelligent Automation & Soft Computing, vol. 31, pp. 1287-1300.

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 17

http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

. Choudhary, G.R., Kumar, S., Kumar, K., Mishra, A., Catal, C., 2018. Empirical analysis of
change metrics for software fault prediction. Comput. Electr. Eng., Elsevier 67, pp. 15-24.

Kaur, A., Kaur, 1., 2018. An empirical evaluation of classification algorithms for fault prediction
in open source projects. J. King Saud Univ.-Comput. Inf. Sci., Elsevier 30, pp. 2-17.

Manjula, C., Florence, L., 2018. Hybrid approach for software defect prediction using machine
learning with optimization technique. Int. J. Comput. Inf. Eng., World Acad. Sci. Eng. Technol.
12 (1), pp. 28-32.

Rhmann, W., 2018b. Cross project defect prediction using hybrid search based algorithms. Int. J.
Inf. Technol., Springer,. https://doi.org/10.1007/s41870-018-0244-7.

Rhmann, W., 2018a. Application of hybrid search based algorithms for software defect
prediction. Int. J. Modern Educ. Comput. Sci, MECS 10 (4),pp. 51-62.
https://doi.org/10.5815/ijmecs.2018.04.07.

Sharma, D., Chandra, P., 2018. A comparative analysis of soft computing techniques in software
fault prediction model development. Int. J. Inf. Technol., Springer pp. 1-10.
https://doi.org/10.1007/s41870-018-0211-3.

Raschka, S., Mirjalili, V., 2017. Python Machine Learning. Published by Packt Publishing Ltd.
Malhotra, R., 2016. An empirical framework for defect prediction using machine learning
techniques with Android software. Appl. Soft Comput., Elsevier 49 (C),pp. 1034-1050.

Yang, X., Tang, K., Yao, X., 2015. A learning-to-rank approach to software defect prediction.
IEEE Trans. Reliab. 64 (1), pp. 234-246.

Erturk, E., Sezer, E.A., 2015. A comparison of some soft computing methods for software fault
prediction. Expert Syst. Appl., Elsevier 42 (4), pp. 1872-1879.

Fenton, N., Bieman, J., 2015. Software Metrics. A Rigorous and Practical Approach. CRC Press,
Taylor and Francis group.

Kaur, A., Kaur, I., 2014. Empirical evaluation of machine learning algorithms for fault
prediction. LNSE Lecture Notes Software Eng. 2 (2), pp. 176-180.

Nam, J., Pan, S.J., Kim, S., 2013. Transfer defect learning. Proc. of Int’l Conf. on Softw.Eng.
(ICSE’13), pp. 382-391.

Zhou, Y., Xu, B., Leung, H., 2010. On the ability of complexity metrics to predict fault-prone
classes in object-oriented systems. J. Syst. Softw. 83, pp. 660-674.

Moser, R., Succi, Pedrycz W., 2008. A Comparative Analysis of the Efficiency of Change
Metrics and Static Code Attributes for Defect Prediction May 10-18. ICSE’08, Leipzig,
Germany, pp. 181-190.

Kim, S., Whitehead, E.J., Zhang, Y., 2008. Classifying software changes: clean or buggy. IEEE
Trans. Softw. Eng. 4 (2),pp. 181-196.

Gondra, 1., 2008. Applying machine learning to software fault-proneness prediction. J. Syst.
Softw. 81, pp. 186-195.

Otero, J., Sanchez, L., 2006. Induction of descriptive fuzzy classifiers with the Logitboost
algorithm. Soft Comput., Springer 10, pp. 825-835.

Jesus, M.J., Hoffmann, F., Navascues, L.J., Sunchez, L., 2004. Induction of fuzzy-rulebased
classifiers with evolutionary boosting algorithms. IEEE Trans. Fuzzy Syst. 12 (3), pp. 296-308.

AIJFR25052993 Volume 6, Issue 5 (September-October 2025) 18

http://www.aijfr.com/

