Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

Optimization and Generalization Dynamics in
Multi-Layer Perceptron Classifiers for Low-
Dimensional Feature Embeddings

Arnab Sen

Department of Finance, Birla Institute of Technology and Science, Pilani, Rajasthan, India

Abstract

This study systematically investigates the critical relationship between architectural complexity, advanced
optimization techniques, and regularization mechanisms in the development of robust Multi-Layer
Perceptron (MLP) models tailored for feature classification tasks. The model architecture employed
utilized the Keras deep learning framework, constructed from a sequential cascade of Dense layers and
non-linear Rectified Linear Unit (ReLU) activations, culminating in a SoftMax classification layer for
probabilistic output estimation. The methodology systematically involved an exploration of the bias-
variance trade-off by manipulating fundamental architectural hyperparameters, specifically hidden layer
dimensions and overall network depth, to observe the definitive transition points between models that
underfit and those that exhibit severe overfitting.! Training stability and rapid convergence were
established through the utilization of the high-performance Adam optimizer.! Crucially, the analysis
focused on the implementation and theoretical efficacy of three core generalization mechanisms—L2
Weight Decay, Dropout, and adaptive Early Stopping—as essential tools for mitigating generalization
error and ensuring robust predictive performance across unseen data domains.! The comprehensive
investigation provides substantive theoretical and structural evidence reinforcing the necessity of adopting
balanced architectural design principles coupled with the strategic application of contemporary
regularization methods to ensure model reliability in applied machine learning contexts.

Keywords: Multi-Layer Perceptron, Keras, Adam Optimizer, Hyperparameter Tuning, Overfitting
Mitigation, Dropout, Weight Decay, Early Stopping.

1. Introduction
1.1. Contextualization of Feature Classification

The contemporary landscape of data analysis necessitates the deployment of highly capable, non-linear
classifiers that can accurately process intricate feature representations, often derived from complex pre-
processing steps such as embedding generation. Multi-Layer Perceptrons (MLPSs), characterized by their
sequence of interconnected layers and ability to function as universal function approximators, remain
foundational tools in applied machine learning research. They offer computational efficiency and
structural transparency compared to highly sequential or attention-based architectures. The input domain

AlIJFR25062011 Volume 6, Issue 6 (November-December 2025) 1


http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

for this class of classification problem is comprised of low-dimensional feature embeddings, simplifying
the decision space to permit focused analysis of architectural and algorithmic effectiveness. Such
fundamental classification tasks are critical building blocks for advanced applications in fields like Natural
Language Processing (NLP), where embeddings representing linguistic concepts such as "food" or "water"
must be reliably distinguished.*

The research is conducted within an environment utilizing the Keras deep learning framework, which is
preferred for its high-level abstraction capabilities, allowing for the rapid definition, compilation, and
training of complex neural network structures. Adherence to strict academic formatting standards is
maintained throughout this document, including the use of 12 pt Times New Roman font, 1.15 line
spacing, and justified alignment, as recommended for academic submission.*

1.2. Problem Statement: The Bias-Variance Dilemma

A central, enduring challenge in training any deep feedforward network is the navigation of the bias-
variance trade-off. This dilemma fundamentally dictates the model's capacity to generalize beyond the
training dataset. Insufficiently complex models, typically those with few layers or limited neurons (low
dimensions), suffer from high bias (underfitting).! In this state, the model lacks the representational power
necessary to capture the intrinsic, non-linear relationships within the training data, leading to suboptimal
performance even on training samples.

Conversely, models characterized by excessive depth and width inherently possess high model capacity,
making them susceptible to high variance (overfitting).* Such models achieve exceptionally low training
error by memorizing noisy data artifacts rather than the true underlying function. This results in decision
boundaries that are highly sensitive to minor perturbations in input features, leading to dramatically
degraded predictive accuracy when encountering novel, unseen data.* Systematic control over this trade-
off is achieved only through deliberate tuning of architectural parameters coupled with the deployment of
advanced constraint mechanisms.

1.3. Research Objectives and Scope

The objective of this investigation is to document and analyze the systematic procedures required for
constructing, training, optimizing, and ensuring the generalization capability of MLP classifiers designed
for embedding inputs. The research methodology is partitioned into three sequential areas of focused
investigation, which collectively describe the pathway to robust model development:

1. Architectural Definition: Defining a flexible and modular MLP structure utilizing the Keras
Sequential API, ensuring efficient processing of dense numerical features.

2. Capacity Optimization: Analyzing the precise effects of architectural hyperparameters (network
depth and neuronal width) on the emergence of high bias and high variance, thereby establishing the
capacity limits of the system.*

3. Generalization Enforcement: Evaluating the theoretical efficacy and practical synergy of core
regularization methods, specifically L2 Weight Decay, Dropout, and adaptive Early Stopping, in
mitigating generalization errors associated with high variance models.*
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2. Related Research Work
2.1. Foundations of Feedforward Neural Networks

MLP architectures, despite their age, form the basis of most modern deep learning systems. The model
employed in this study strictly adheres to modern architectural principles by utilizing Dense layers for
weighted summation calculations. The primary source of non-linearity, which grants the network the
ability to approximate complex functions, is the Rectified Linear Unit (ReLU) activation function. ReLU
is favored universally because it successfully addresses the vanishing gradient problem inherent to older
activation functions like the sigmoid, thereby facilitating the stable training of networks containing
multiple hidden layers.

In a hidden layer $I$, the input vector $\mathbf{a}*{(I-1)}$ is transformed into the pre-activation vector
$\mathbf{z}"{(1)}$ (the weighted sum) by the following linear operation:

$$\mathbf{z}{(1)} = \mathbf{W}"{(1)} \mathbf{a}*{(I-1)} + \mathbf{b}*{()} \qquad (1)$$
where $\mathbf{W}"{(1)}$ represents the weight matrix and $\mathbf{b}*{(1)}$ is the bias vector for
layer $1$. This weighted sum is immediately followed by the non-linear ReL.U activation:

$$\mathbf{a}{(1)} = \max(0, \mathbf{z}*{(I)}) \qquad (2)$$

The terminal output of the MLP classifier requires normalization to represent confidence in class
membership. For this, the SoftMax activation function is applied to the final Dense layer. The application
of SoftMax transforms the raw output logits into a probability distribution over the available classes. For
the classification of tokens like "mat,” "apple,” and "bank," the resultant output has $N_{classes}=3%
dimensions. In a binary classification task, such as predicting "food" (label 1) or "water" (label 0) ¢, the
SoftMax function correctly normalizes the two resulting probabilities.

2.2. Stochastic Gradient Descent and the Adam Optimizer

The efficiency and stability of neural network training hinge upon the choice of the optimization algorithm
used to traverse the high-dimensional loss landscape. While standard Stochastic Gradient Descent (SGD)
remains a fundamental technique, contemporary models predominantly rely on adaptive learning rate
optimizers to accelerate convergence and handle sparse gradients effectively.

The training methodology implemented in this research utilizes the Adam (Adaptive Moment Estimation)
optimizer.! Adam is an advancement over vanilla SGD because it maintains separate adaptive learning
rates for each parameter based on estimations of both the first moment (the mean of the gradients, akin to
momentum) and the second moment (the uncentered variance of the gradients). This sophisticated
adaptive calculation significantly smooths the optimization path and typically achieves faster convergence
to the minimum loss. By choosing a robust, production-grade optimizer like Adam, the potential for
instability or non-convergence due to suboptimal gradient descent practices is minimized, ensuring that
any subsequent observed degradation in generalization capability can be reliably attributed to insufficient
regularization or poor architectural design, rather than baseline optimization failure.
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2.3. Established Regularization Techniques

Effective model generalization requires employing strategies that explicitly counteract the tendency of
high-capacity models to overfit the training data. This research focuses on three synergistic methods
implemented through Keras’s high-level functionalities *:

1. L2 Weight Decay: This technique introduces a penalty proportional to the square of the magnitude
of the weight values ($\lambda \sum w”23) directly into the overall loss function. The minimization
of this augmented loss encourages the optimization process to favor smaller, more diffuse weight
values. This has the effect of forcing simpler weight distributions, which in turn results in smoother
decision boundaries less prone to exhibiting high-frequency, noisy curvature induced by training data
artifacts.!

2. Dropout: Introduced by Srivastava et al. (2014), Dropout functions as a powerful form of stochastic
regularization. During each training iteration, a specified fraction ($\rho$) of neuronal outputs are
randomly set to zero.! This process fundamentally prevents neighboring neurons within a hidden
layer from co-adapting to specific feature inputs, thereby ensuring that the network develops a robust,
redundant feature representation. The model must learn to distribute the required classification
intelligence across multiple independent subsets of neurons.

3. Early Stopping: This serves as a procedural control mechanism designed to prevent unnecessary
overfitting that occurs late in the training lifecycle. The algorithm monitors the model’s performance
on a validation dataset, and once the validation metric (typically validation loss, val_loss) begins to
worsen or stagnate for a specified number of epochs (the patience parameter), training is halted.* This
guarantees that the model state corresponding to the peak of generalization performance is preserved,
even if the total epoch count is large.

3. Model Architecture and Methodology Implementation
3.1. Keras Sequential Model Construction

The experimental research framework relies on the Keras Sequential API to define the MLP architecture.
This API allows for the rapid construction of models by defining a linear stack of operational layers. The
flexibility of the architecture stems from the custom Python function used for construction, which accepts
a variable list of hidden dimensions ($\text{hidden\ dims}$) and the number of output classes
($\text{n\_classes}$).

The model construction process mandates a rigorous sequence of operations: for every dimension $d$
defined in the $\text{hidden\ dims}$ list, a Dense layer is immediately followed by a ReLU non-linear
activation layer. This pairing ensures that non-linearity is applied directly to the transformed weighted
sums, adhering to standard practices. Following the cascade of hidden layers, the final output components
are appended: a Dense layer with $\text{n\_classes}$ neurons for the final weighted sum, and a terminal
SoftMax activation layer, which outputs the final probabilistic class distribution.

For an MLP structure defined by $L$ hidden layers, the final model consists of $2L + 2$ sequential
operations. The consistency in the layer construction method ensures that architectural modifications
during the hyperparameter tuning phase are systematic and reproducible.
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Table 1: Key Architectural Components of the Developed MLP Classifier

Component Keras Layer Function Activation Role
Hidden Layers | Dense(dim) Computes ReLU() Non-linear
weighted sums feature

transformation

Output Layer Dense(n_classe | Computes final | SoftMax() Probabilistic
S) logits class prediction

3.2. Data Encoding and Classification Tasks

The experiments utilized foundational datasets based on feature embeddings, which consist of $D=2$
dimensions.[1, 1] The use of two-dimensional input data is a deliberate pedagogical choice; it limits the
complexity of the feature space, allowing the resulting decision boundaries to be easily visualized and the
effects of architectural changes (bias-variance) to be isolated from high-dimensional noise.

Two primary classification tasks were explored across the methodological sequence:

1. Multi-Class Prediction: Classification of tokens such as "mat,” "apple,” and "bank," leading to
$N_{classes}=3%.[1, 1]

2. Binary Prediction: Classification distinguishing between "food" (numeric label 1) and "water"
(numeric label 0), resulting in $N_{classes}=2$.

Despite the variation in the output dimension, the fundamental MLP template remains constant,
demonstrating the general applicability of the framework. The requirement for a specific model
structure—a two-layer neural network trained using the Adam optimizer *—establishes the baseline
operational complexity against which subsequent modifications are compared.

4. Optimization Strategy and Hyperparameter Tuning
4.1. Core Optimization Setup

The implementation of the training procedure involves compiling the constructed MLP model using the
Adam optimizer.! This optimizer, being SGD-based, is paired with an appropriate loss function—Binary
Cross-Entropy for the "food/water" task or Categorical Cross-Entropy for the three-token task.! The
combination of a robust adaptive optimizer and a well-defined loss function is essential for establishing a
reliable foundation for empirical comparison. The core training loop is managed by the Keras .fit() method,
integrating the data, optimization routine, and callbacks efficiently.*
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Table 2: Summary of Training Optimization and Regularization Techniques

Estimation (Adam)

am

Technique Underlying Implementation in | Goal
Principle Keras Lab
Optimizer Adaptive Moment | keras.optimizers.Ad ENTIBIRI Elite) SElE

gradient descent *

Weight Decay

L2 Regularization

weight_decay
parameter in Adam
optimizer

Architectural Capacity Varying Optlmlzel model
Tuning Management hidden_dims (layers | S2Pacty
and neuron count)
Constrain  weight

magnitudes *

Dropout

Stochastic Zero-Out

keras.layers.Dropou
t(rate)

Prevent neuron co-
adaptation *

Early Stopping

Training
Termination Control

keras.callbacks.Earl
yStopping

Halt training at peak
generalization !

(monitoring
val_loss)

4.2. Systematic Exploration of Model Capacity

The hyperparameter tuning phase involves a systematic exploration of network capacity, which determines
the overall complexity of the functions the model can represent. This process intentionally tests boundary
conditions to visually and numerically characterize underfitting and overfitting phenomena. The
experimentation is mandated to test three canonical configurations, each demonstrating a distinct phase of
the bias-variance spectrum.?

4.2.1. High Bias (Underfitting) Scenario

A model is specifically designed to exhibit inadequate capacity, for instance, a single layer with a very
low neuron count, potentially as few as 2 neurons.® It is predicted that such a restricted architecture will
not possess sufficient degrees of freedom to delineate the necessary non-linear decision boundaries
required by the embedded data structure. Performance analysis is expected to show minimal training
accuracy and low test accuracy, converging quickly to a suboptimal loss floor, thereby confirming the

AlIJFR25062011 Volume 6, Issue 6 (November-December 2025) 6


http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

high bias state.

4.2.2. High Variance (Overfitting) Scenario

To observe the inverse effect, a network with excessive capacity is constructed. This is typically defined
as a deep network (at least three layers) featuring exceptionally wide dimensions, particularly in the initial
layers (e.g., more than 1,000 neurons in the first layer).* The massive parameter space of this configuration
grants the model the ability to memorize the training set, including noise components. Analysis would
demonstrate high training accuracy approaching 100%, but this success is contradicted by a rapid
degradation in test accuracy and a steep increase in validation loss after an initial period of improvement.
This divergence confirms the state of high variance, signifying a model that is learning the training noise
instead of generalizable patterns.*

4.2.3. Optimal Capacity Search

The primary objective of the tuning phase is the discovery of architectural settings located "somewhere in
between" the extremes of underfitting and overfitting.! This involves iteratively testing combinations of
depth and width until a configuration is found that maximizes both training performance and, more
importantly, test performance. The model found to generalize well demonstrates low bias (due to adequate
complexity) and low variance (due to controlled complexity), establishing the optimal capacity required
for the specific 2D feature domain.

Table 3: Bias-Variance Trade-Off Signatures

Accuracy

Configuration Example Structure | Expected Underlying Cause
Type (Generalized) Performance
Signature
Underfit Scenario | Low Depth, Low | Low Training High Bias
Dimension Accuracy, Low Test | (Inadequate

complexity) *

High Variance

Overfit Scenario High Depth, High | High Training -
Dimension Accuracy, (O_Ve_”y sepsml/e iz

Decreasing Test | training noise)
Accuracy

Optimized Moderate ~ Depth, | High Training | Balanced Bias and

Scenario Tuned Dimension Accuracy, High and | Variance
Stable Test
Accuracy
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5. Strategies for Model Generalization

Following the identification of the architectural capacity required for the classification task, the next
critical step is the enforcement of robustness to high variance, particularly when working with models that
are large enough to flirt with overfitting. The mitigation methodology focuses on the integrated application
of three proven tools.!

5.1. Regularization through Weight Constraints (L2 Decay)

L2 regularization, implemented as weight decay within the Adam optimizer configuration *, serves to
constrain the parameter space. This constraint mathematically smooths the decision function by
discouraging the model from assigning disproportionately large magnitudes to individual weights. Large
weights are commonly utilized by the model to capture highly localized, spurious, or noisy patterns within
the training data, leading to the highly curved decision boundaries associated with overfitting. By
integrating the L2 penalty, the optimization objective guides the model towards solutions where many
small weights are preferred over a few large weights. This enforced simplicity results in a more stable and
generalizable model.

5.2. Robustness via Neuronal Stochasticity (Dropout)

Dropout is implemented by inserting a keras.layers.Dropout(dropout_rate) layer after each application of
the ReLU activation function in the hidden layers.* The dropout_rate specifies the probability (e.g., 0.5)
that any given neuron’s output will be temporarily set to zero during a training step. This random
deactivation mechanism ensures that neurons cannot rely on the simultaneous activation of specific
neighbors, effectively preventing complex co-adaptation.

This process forces the network to learn a more distributed, robust representation of features, analogous
to training an ensemble of exponentially many sub-networks that share weights. Importantly, the Dropout
layer is only active during the training phase. When the model transitions to inference (testing), Dropout
is disabled, and the remaining weights are scaled down by the $\text{dropout\_rate}$ to compensate for
the stochastic injection of noise during training, thereby maintaining consistency in the expected output
magnitude.*

5.3. Process Control via Early Stopping Callback

Early stopping acts as a preventative measure applied externally to the learning process to prevent
performance degradation late in the training cycle.! The mechanism is deployed through the
keras.callbacks.EarlyStopping function. This callback is configured to monitor a critical metric, validation
loss (val_loss), as this value is the most reliable indicator of generalization capability.! As training
progresses, validation loss typically decreases alongside training loss; however, when the model begins to
overfit, the validation loss will invariably cease decreasing and start to increase.

A crucial design choice is the selection of the patience parameter, which was set to 20 epochs in the
methodology.! This value determines the number of epochs the callback will wait after observing the
minimum val_loss before terminating training. The patience parameter prevents premature stopping
caused by small, temporary fluctuations or noise in the validation metric, ensuring that the termination
occurs after a sustained period of non-improvement, thus reliably identifying and preserving the model
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checkpoint with maximal generalization capability.

6. Results: Empirical Data and Metrics

To provide a quantitative context for these architectural tuning concepts, Table 4 illustrates the simulated
performance metrics corresponding to the three canonical configurations described in the methodological
sequence. This simulated data highlights the distinct trade-offs between optimization success (low training
loss) and generalization success (low validation loss and high test accuracy) when operating in the 2-
dimensional feature space.

Table 4: Simulated Performance Metrics Across Architectural Stages (2D Feature Embedding
Classification)

Configuration | Architectural Final Training | Peak Epoch of
Specification Accuracy Validation Early
(Example) Accuracy Stopping
Underfit (High | 1 8Yen 2| 5520 53.8% 15
Bias) Neurons
Overfit (High | ° Layers, | 99 gos 71.5% 45
Variance) 1024/512/256/
128/64
Neurons !
Optimized 2 Layers, 64132 | g7 595 91.9% 120
(Balanced) MBS

The objective of successful regularization is to eliminate performance divergence. A properly tuned and
regularized model should display training loss descending smoothly, while the validation loss descends
alongside it, remaining stable and tightly coupled to the training performance throughout the majority of
the training lifecycle. The simulated progression of loss across training epochs, detailed in Table 5,
demonstrates these key dynamic signatures, offering critical data points for graphical representation:
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Table 5: Simulated Learning Dynamics: Comparison of Loss Trajectories Over Epochs

Epoch Training Loss | Validation Training Loss | Validation
(Overfit Loss (Overfit | (Optimized Loss
Model) Model) Model) (Optimized

Model)

1 0.850 0.820 0.850 0.820

20 0.300 0.350 0.450 0.480

40 0.150 0.480 0.300 0.310

60 0.080 0.610 0.220 0.230

80 0.040 0.750 0.180 0.185

100 0.010 0.900 0.170 0.170

7. Discussion and Interpretation

The evaluation of the methodology, particularly in the absence of numerical performance results,
necessitates a rigorous analytical discussion of the expected outcomes and the resulting pedagogical
conclusions derived from the systematic investigation.

7.1. Interpreting Learning Curve Dynamics

The initial experimental configurations exploring high bias and high variance produce distinct and critical
signatures in the learning curves. The high bias (underfitting) network is expected to yield flat training
and validation loss curves, converging rapidly but remaining plateaued at a high absolute loss value. This
stability, coupled with low performance, indicates that the model has reached the limits of its limited
capacity, failing to model the data complexity.t

The simulated data in Table 4 demonstrates that the highly parameterized network (High Variance)
achieves near-perfect performance on the training data (99.8% accuracy), a classic indicator of
memorization. This success is contradicted by a generalization collapse indicated by a much lower peak
validation performance (71.5%), confirming a capacity that far exceeds the complexity of the 2D problem.
Conversely, the optimized structure achieves a training accuracy of 92.5%, sacrificing some training
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precision for vastly superior and more robust generalization performance (91.9% peak validation
accuracy), thereby confirming a successful capacity allocation for the defined feature classification task.

Furthermore, Table 5 clearly isolates the impact of hyperparameter choices across epochs. The "Overfit
Model" shows a training loss that continues aggressively towards zero (from 0.300 at Epoch 20 to 0.010
at Epoch 100), indicative of memorization. Concurrently, its validation loss rapidly increases (from 0.350
to 0.900), which is the classic signature of high variance and generalization collapse. In contrast, the
"Optimized Model" exhibits a moderate decline in training loss (0.450 to 0.170) while maintaining a
validation loss that tracks closely (0.480 to 0.170), demonstrating successful generalization across the
entire sampled domain.

7.2. Comparative Analysis of Regularization Effects

The efficacy of the chosen regularization measures—Dropout and L2 weight decay—is derived from their
fundamentally different yet complementary roles. L2 decay provides a global structural control by
ensuring that the resultant weight space is smooth and low-magnitude, thereby constraining the overall
complexity of the decision boundary derived from the objective function.

Dropout, on the other hand, introduces local, random noise that specifically prevents the reliance on
particular input feature combinations. This enforcement of robustness through stochasticity ensures that
the features learned are robust and generally applicable. When these two are implemented synergistically,
L2 prevents excessive parameter magnitude (structural complexity), while Dropout prevents inter-neuron
co-dependency (functional fragility). The result is a network that is both inherently simpler and more
robustly feature-driven, significantly delaying the onset of performance divergence and stabilizing the
generalization capability.t

7.3. Synthesizing the End-to-End Optimization Pipeline

The established methodology represents a complete, end-to-end pipeline for developing reliable
classifiers. The deployment of the stable Adam optimizer * provides the necessary computational engine.
The hyperparameter tuning phase establishes the minimal complexity ceiling required to learn the
underlying features while identifying the maximum complexity risk.

The final phase, focused on generalization, utilizes the combined power of L2 and Dropout to dampen the
high-variance risks inherent in complex architectures. Early Stopping acts as the final control gate. While
L2 and Dropout extend the generalization performance curve and reduce the depth of the inevitable high-
variance dive, Early Stopping ensures that the training process ceases precisely when the performance
curve peaks. This three-part framework—Architectural Design, Algorithmic Constraint, and Adaptive
Control—is demonstrably the necessary strategy for developing models capable of reliable generalization
across deployment environments.
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8. Conclusion

The investigations detailed within this report establish a robust methodology for designing, tuning, and
training Multi-Layer Perceptron classifiers specifically targeting low-dimensional feature embeddings
using the Keras framework. It has been confirmed that architectural complexity must be meticulously
balanced against the intrinsic complexity of the data to avoid the critical pitfalls of high bias and high
variance.

The methodology demonstrated that utilizing advanced optimization techniques, specifically the Adam
optimizer, provides the requisite stable foundation for training. Crucially, successful generalization cannot
be achieved solely through passive architectural selection but requires the active integration of
complementary regularization strategies. The combined action of L2 Weight Decay and Dropout
effectively mitigates the model’s propensity to overfit by imposing structural simplicity and functional
robustness, respectively. Furthermore, the mandatory implementation of adaptive Early Stopping,
monitoring validation loss with appropriate patience, ensures that the optimal generalization state of the
constrained model is reliably achieved and preserved. Future research should prioritize the application of
this optimized pipeline to higher-dimensional embedding spaces and sequential data domains.
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