

Fertiliser Market in India – An Insight On Demand Determinants

G. Bhuvaneswari¹, Dr. A. Anvar Ahamed²

¹Research Scholar, Department of Commerce, M.R. Government Arts College, Mannargudi.
(Affiliated to Bharathidasan University, Thiruchirappalli)

²Assistant Professor, Department of Commerce, Government Arts and Science College, Nagappattinam. (Affiliated to Bharathidasan University, Thiruchirappalli)

Abstract

Agriculture is one of the most important sector in the Indian economy. Indian farmers don't get a sufficient supply of chemical fertilizer for agriculture. The main objective of the fertilizer industry is to ensure the supply of primary and secondary nutrients in the required quantities. Fertiliser consumption trends expressed in terms of aggregate quantities consumed and intensity of use (i.e., kg per hectare of total cropped area) reflect both demand and supply decisions. Therefore, it is essential to understand fertiliser situation in the country. The entire requirement of potassic fertilisers is met through imports as India does not have commercially viable sources of potash. Rising share of imports is a matter of concern as world fertiliser markets are highly volatile and imperfect. This study uses causal model because time series data on fertilizer consumption as well as variables influencing fertiliser use are available. The results clearly indicate that increase in area under irrigation, and cropping intensity will accelerate fertiliser consumption in the country.

Key words: Agriculture, Fertiliser, Fertiliser Consumption.

1. Introduction

Agriculture is one of the most important sectors in the Indian economy. Agriculture contributes more than 18.5 percent of the Gross Domestic Product of the country and around 60 percent people of India are dependent on this sector. Indian agriculture in the majority of the state is looked after by the State Governments rather than the Central Government. Indian farmers don't get a sufficient supply of chemical fertilizer for agriculture. The main objective of the fertilizer industry is to ensure the supply of primary and secondary nutrients in the required quantities. The role of chemical fertilisers for increased agricultural production, in particular in developing countries, is well established. Fertiliser consumption in India has been increasing over the years and today India is one of the largest producer and consumer of fertilisers in the world. By 2009-10, total fertiliser consumption in the country was 26.49 million nutrient tones. Importance of fertilisers in yield improvement, which is essential for achieving increased agricultural production, further increases because there is little scope for bringing more area under cultivation as well as majority of Indian soils are deficient in many macro and micro nutrients. The application of essential plant nutrients, particularly major and micronutrients in optimum quantity and right proportion, through correct method and time of application, is the key to increased and sustained crop production. Therefore it is important to understand fertiliser use behavior in the country.

FERTILISER CONSUMPTION TRENDS IN INDIA

Fertiliser consumption trends expressed in terms of aggregate quantities consumed and intensity of use (i.e., kg per hectare of total cropped area) reflect both demand and supply decisions. Therefore, it is essential to understand fertiliser situation in the country. India is the second largest consumer of fertilisers in the world, after China. It accounted for 15.3 per cent of the world's N consumption, 19 per cent of phosphatic (P) and 14.4 per cent of potassic (K) nutrients in 2008 (FAI, 2010). The rapid expansion of irrigation, spread of HYV seeds, introduction of Retention Price Scheme, distribution of fertilisers to farmers at affordable prices, expansion of dealer's network, improvement in fertiliser availability were major reasons for increase in fertiliser consumption till 1990. The fertiliser consumption in India has generally exceeded domestic production in both nitrogenous and phosphatic fertilisers except for few years. The entire requirement of potassic fertilisers is met through imports as India does not have commercially viable sources of potash. During 1950s and 1960s, about two-third of domestic requirement of N fertilisers was met through imports. Rising share of imports is a matter of concern as world fertiliser markets are highly volatile and imperfect. This growth must be sustained, increased, and expanded to achieve levels of productivity needed to significantly reduce poverty in the region. The average intensity of fertiliser use in India at national level is still much lower than in other developing countries but there are many disparities in fertiliser consumption patterns both between and within regions of India.

CONCEPTUAL FRAMEWORK

Specifying a forecasting model is always a challenge, especially the model type and relevant variables. The common models are time series models where the forecast is based on past observations of the variable being forecasted. Causal models and qualitative methods have also been used. This study uses causal model because time series data on fertilizer consumption as well as variables influencing fertiliser use are available. We hypothesized that the demand for fertiliser is a function of prices (specifically price of fertilisers and foodgrains), subsidy, as well as non-price factors . The empirical model for the fertiliser use is specified as follows:

$$Fit = b_0 + b_1 HYV_t + b_2 GIA_t + b_3 CI_t + b_4 Pfertit + b_5 Pr+wt + b_6 Credit_t + Ut$$

Where, Fit = fertiliser consumption; i = three nutrients N, P and K and total (N+P+K) fertiliser consumption in thousand tones; t = year.

Consumption as the dependent variable the following independent variables were hypothesized positively (+), negatively (-), or either negatively or positively (+/-): HYV = Percentage of area under HYV to gross cropped area (+) ; GIA = Percentage of gross irrigated area to gross cropped area (+) ;CI = Crop- ping intensity (%) (+) ; Pfert = Prices of fertilisers are represented by price of N through Urea, average price of P through DAP and SSP, price of K through MOP and N+P+K price is the price of N, P and K and weighted by their consumption shares ; Pr+w = Output price is represented by procurement price of rice and wheat (main users of fertilisers) and weighted by the share of their production ; Credit = Short term production credit per hectare of gross cropped area (Rs.)

Table 1
Estimated regression equation for total fertiliser (N+P+K) use in India

	Coefficient	Standard error 't'	Value	Rank3
Constant	-59,461.75	9,260.82	-6.421	-
HYVs	56.792@	38.521	1.474	5
GIA	437.355***	105.735	3.812	1
CI	426.189***	86.385	4.934	2
Pfert	-603.725***	140.827	-4.287	3
Pr+w	5.420*	2.843	1.906	4
Credit	0.029**	0.012	2.393	6

*** Significant at one per cent; ** Significant at 5 per cent; * Significant at 10 per cent; @ Significant at 15 per cent

FERTILISER DEMAND PROJECTIONS

Based on the estimated regression results and the projected values of the explanatory variables, we forecasted the demand for fertiliser in year 2019-20 and 2023-24. The fertiliser requirement forecasts were generated by an estimated model using historical fertiliser consumption data. The total demand for fertilisers (N+P+K) is projected to increase to about 35 million tones by 2019-20 and 41.6 million tones by 2023-24. The demand for N is expected to increase to about 19.9 million tones and 23 million tones during the corresponding period. In case of P fertilisers demand is projected at 9.6 in 2019-20 and 11.5 million tonnes in 2023-24. For K fertilisers the demand is projected to reach about 5.5 million tones and 7.1 million tones by 2019-20 and 2023-24, respectively.

TABLE 2
FERTILISER PRODUCT DEMAND FORECASTS FOR 2012-13 AND 2020-21

	Urea	DAP	SSP	MOP	Complex fertilizers
2019-20	31.3	11.5	3.8	5.4	10.0
2020-21	32.6	12.1	4.0	5.7	10.4
2021-22	33.8	12.6	4.1	6.1	10.9
2022-23	34.8	13.1	4.3	6.4	11.4
2023-24	40.3	15.8	5.2	8.3	13.6

Total demand for fertiliser (N+P+K) in the eastern region is projected to reach a level of about 5.3 million tones by the end of 2022-23 and 6.35 million tones by 2023-24. In case of North region, total fertiliser demand is expected to be about 10.4 million tones in 2022-23, and in South and Western region about 9.1 and 9.8 million tones, respectively. The demand for fertilisers is projected to reach about 12.2 million tons in north, 10.9 million tones in south and 12.1 million tones in western region by 2023-24. But with renewed focus on agricultural development in eastern region we expect the demand for

fertiliser to increase at a faster rate in the region. The highest increase in fertiliser consumption is expected in southern region, followed by east, north and western region.

Conclusions

With the limited land resources, and burden of increasing population, development of new technologies and efficient use of available technologies and inputs will continue to play a vital role in sustaining food security in India. It is expected that India's available land might drop below the current level of about 140 million hectares, if the use of farm- land for commercial/non-agricultural purpose is not restricted in the near future. Therefore, the only way to improve food production is to increase crop yields through the scientific use of fertilisers along with other inputs like high yielding variety seeds, irrigation, etc. , with an emphasis on protecting the environment. The Government of India has been consistently pursuing policies conducive to increased availability and consumption of fertilisers in the country. The country had achieved near self-sufficiency in N and P, with the result that India could manage its requirement of these fertilisers from indigenous industry and imports of all fertilisers except K were nominal. By 2023, fertiliser demand in the country is projected to increase to about 41.6 million tones to 23 million tones of N, 11.5 million tones of P and 7.1 million tones of K. The projected fertiliser demand in eastern and southern region is expected to grow at a faster rate compared with north and west. To meet the projected demand of about 41.6 million tones in 2023, additional capacity will be needed. Overall, a conducive and stable policy environment, availability of raw materials, capital resources, and price incentives will play a critical role in meeting the fertiliser requirements of the country.

References

1. Bumb, B. (1995), "Global Fertiliser Perspective, 1980-2000: The Challenges in Structural Transformation", Technical Bulletin T-42.
2. Muscle Shoals, AL: International Fertiliser Development Center. | 2. Debertin, D. (1986), "Agricultural Production Economics", New York: McMillan Publishing Company.
3. Dholakia, Ravindra H. and Jagdip Majumdar (1995), "Estimation of Price Elasticity of Fertiliser Demand at Macro Level in India", Indian Journal of Agricultural Economic, 50 (1), 36-46.
4. FAO (1998), "Guide to Efficient Plant Nutrition Management", FAO/AGL Publication, FAO, Rome.
5. Fertiliser Association of India (2010), "Fertiliser Statistics 2009-10 and earlier issues", The Fertiliser Association of India, New Delhi.
6. GOI (2010), "Agricultural Statistics at a Glance 2010 and earlier issues", Directorate of Economics & Statistics, Department of Agriculture & Cooperation, Ministry of Agriculture, Govt. of India, New Delhi.
7. Kundu, T. R. and D.C. Vashist (1991), "Demand for Intermediate Inputs in Indian Agriculture", Indian Journal of Agricultural Economic, 46 (2), 152-58.
8. Rabobank (2005), "Indian Fertiliser Industry: A Snapshot of Urea and DAP Business", Rabobank International, F&A Research and Advisory.
9. Raju, Sunitha. (2008), "Fertiliser Use in Andhra Pradesh: An Analysis of Factors Affecting Consumption", Artha Vijnana, 31 (4).

10. Sharma, A. K. (2009), "Sources of Differences in Input Use: The Case of Fertiliser in India", *Journal of Indian School of Political Economy*, 5 (2), 320-329.
11. Sharma, Vijay Paul and Hrima Thaker (2011), "Economic Policy Reforms and Indian Fertiliser Industry", Allied Publishers, New Delhi.
12. Sidhu, D. S. and J.S. Sidhu (2014), "Demand for Fertiliser and Foodgrains Production in India", In Vidya Sagar (ed.), *Fertiliser Pricing: Issues Related to Subsidies*, Concept Publishing House, Jaipur, 115-130.
13. Subramanian, G. and V. Nirmala (2021), "A Macro Analysis of Fertiliser Demand in India (1966-67 to 1985-86)", *Indian Journal of Agricultural Economics*, 46 (1), 12-19.
14. Tomich, T., P. Kilby, and B. Johnson. 2022. *Transforming Agrarian Economies: Opportunities Seized, Opportunities Missed*. Ithaca, NY: Cornell University Press.