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Abstract 

This paper introduces the concept of the perfect shape, defined as an 𝑛-dimensional figure whose 

enclosed measure and boundary measure are connected through a differential relationship. Specifically, a 

shape is perfect when the derivative of its 𝑛-dimensional quantity with respect to its defining size 

parameter equals its (n−1)-dimensional quantity. Through geometric and differential analysis, the paper 

demonstrates that this condition holds exclusively for hyperspheres—figures whose boundary points are 

equidistant from a central origin. Circles and spheres thus serve as lower-dimensional instances of this 

universal form. Building upon this foundation, the paper proposes a conjecture linking the measures of 

perfect shapes across consecutive dimensions. Observing that differentiation and integration connect 

adjacent dimensions, it is hypothesized that higher-dimensional expressions of the hypersphere can also 

be derived by multiplying the measure of the n-dimensional figure by 2𝑛, reflecting a recursive geometric 

pattern among perfect shapes. This framework offers a new perspective on dimensional growth and 

suggests that higher-dimensional geometry may be constructed through the calculus of adjacent 

dimensions. Although this study presents a theoretical conjecture, future research will aim to validate the 

proposed 2𝑛-scaling relationship through topological data analysis and AI-based modeling, providing a 

computational approach to bridging analytic and geometric views of higher-dimensional space. 

Keywords: Perfect shape; n-dimensional geometry; Dimensional recursion; Hypersphere. 

1.  Introduction 

Geometric quantities (e.g., length, area, volume) are measurements of shapes in space. Understanding 

how these quantities are related reveals fundamental relationships among dimensions of space. For certain 

shapes in 𝑛-dimensional space, these quantities are linked through differentiation: the rate of change of its 

𝑛-dimensional quantity with respect to its defining size parameter is equal to its (𝑛 − 1)-dimensional 

quantity. For instance, when a circle (a two-dimensional shape) expands, the rate at which its area 𝐴 =

𝜋𝑟2  (2D measure) increases with respect to its radius 𝑟  is equal to its circumference 𝐶 = 2𝜋𝑟  (1D 

measure). Likewise, the derivative of a sphere’s volume 𝑉 =
4

3
𝜋𝑟3  yields its surface area 𝑆 = 4𝜋𝑟2 . 
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However, this derivative relationship does not extend to all shapes. The derivative of a square’s area is not 

equal to its perimeter, just to name one of such shapes that fail to maintain this relationship.  

This observation motivates the definition of a new category of shapes which we call perfect shapes. A 

shape is perfect when the rate of change of its enclosed measure is exactly equal to its boundary measure. 

This condition can only be satisfied by shapes whose every boundary point is equidistant from a central 

origin—namely circles, spheres, and their higher-dimensional analogues, the 𝑛 -dimensional 

hyperspheres—whereas shapes lacking uniform radial symmetry do not satisfy. 

Building on this concept, we explore a potential pattern linking the measures of perfect shapes across 

consecutive dimensions. Observing that the surface area of a sphere (𝑆 = 4𝜋𝑟2) is four times the area of 

a circle (𝐴 = 𝜋𝑟2) , we hypothesize that this relationship generalizes as follows: multiplying an 𝑛 -

dimensional measure by 2𝑛 and integrating with respect to the size parameter may yield the corresponding 

(𝑛 + 1)-dimensional measure. This proposed 2𝑛  pattern suggests a recursive structure among perfect 

shapes, providing an intuitive pathway toward expressing the volumes of hyperspheres in arbitrary 

dimensions. 

To visualize this idea, we introduce the tennis ball analogy. A square of side length 4𝑟 can contain 

four circles of radius 𝑟 . When conceptually “folded” into 3D—analogous to how a tennis ball is 

constructed—the 4 circles form a sphere. This arrangement suggests that the surface of a sphere is formed 

by 22 = 4 circles. Extending this reasoning, a cube of side length 4𝑟 can contain 23 = 8 spheres, hinting 

at a structural pattern across dimensions. While this analogy is not a formal proof, it offers a tangible 

visualization for the hypothesized dimensional progression of perfect shapes. 

Finally, we note that a well-established analytical formula, derived from the Gamma function, already 

exists for the volume of 𝑛-dimensional hyperspheres. Our proposed method does not seek to contradict 

that formulation but to offer an alternative geometric perspective based on differential relationships and 

dimensional growth patterns. The theoretical framework presented here constitutes the first part of this 

research. Future work will focus on computational validation and numerical comparison between the 

established Gamma-based model and our hypothesized 2𝑛-scaling approach. 

2.  Perfect Shape 

2.1.  Definition 

An 𝑛-dimensional shape is said to be perfect if the rate of change of its 𝑛-dimensional quantity with 

respect to its defining size parameter equals its (𝑛 − 1)-dimensional quantity. This can be expressed as: 

𝑑(𝑛−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒)

𝑑(𝑠𝑖𝑧𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)
=  (𝑛 − 1)-dimensional measure 

For an 𝑛-dimensional shape, its 𝑛-dimensional quantity represents the measure of the space enclosed 

by the shape; for example, a 2D shape encloses a surface, and its 2D quantity corresponds to the area of 

that surface.  

The defining size parameter is a 1D quantity that characterizes the scale of the shape and is used to 

calculate the shape’s geometric quantities; for example, a radius is the defining size parameter for a circle 

or sphere, while an edge is one for a square or cube.  
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The (𝑛 − 1)-dimensional quantity represents the measure of its boundary; for example, a perimeter is 

the 1D boundary measure for 2D shapes, and a surface area is the 2D boundary measure for 3D shapes. 

In other words, a shape is perfect if the instantaneous rate of change of its enclosed measure is exactly 

equal to its boundary measure. 

Example: A circle is a perfect shape. 

In 2D, a circle belongs to this classification. A circle’s enclosed measure is the area 𝐴 =  𝜋𝑟2 . 

Deriving the area with respect to the radius 𝑟 gives the circle’s boundary measure, circumference 𝐶 =

 2𝜋𝑟. The differentiation 
𝑑

𝑑𝑟
𝜋𝑟2 = 2𝜋𝑟 proves that 

𝑑𝐴

𝑑𝑟
= 𝐶, proving that a circle is a perfect shape. 

2.2.  Conditions for Perfection 

Consider an 𝑛 -dimensional shape. Let 𝑅  be its defining size parameter, 𝑆𝑛−1  be its (𝑛 − 1) -

dimensional surface “area” or boundary, and 𝑉𝑛(𝑅) be its 𝑛-dimensional volume enclosed by the shape. 

Proposition 2.2.1. If an 𝑛-dimensional shape satisfies the perfect-shape condition 

𝑑𝑉𝑛(𝑅)

𝑑𝑅
= 𝑆𝑛−1, 

then the distance from the chosen center to the boundary must be the same in every direction. 

Proof by example: 

1. Circle (example of a perfect shape). 

Area of a circle: 𝐴 = 𝜋𝑟2. Differentiate with respect to radius 𝑟: 

𝑑𝐴

𝑑𝑟
= 2𝜋𝑟. 

Write in the differential form, 𝑑𝐴 = 2𝜋𝑟 ⋅ 𝑑𝑟. The coefficient 2𝜋𝑟 is exactly the circle’s circumference. 

Thus a small uniform radial increase 𝑑𝑟  adds an area equal to 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 × 𝑑𝑟 . The circle expands 

uniformly because every boundary point is at the same distance 𝑟 from the center. 

2. Square (counterexample). 

Let 𝑥 be the orthogonal distance from a square’s center to the midpoint of its edge. Writing area in 

terms of 𝑥 gives 𝐴 =  4𝑥2, so  

𝑑𝐴 = 8𝑥𝑑𝑥. 

Let 𝑦 be the distance from the square’s center to corner (𝑦 = √2𝑥). Writing area in terms of 𝑦 gives 

𝐴 = 2𝑦2, so  

𝑑𝐴 = 4𝑦𝑑𝑦 = 4(√2𝑥)𝑑𝑦. 
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The two relations give different increments 𝑑𝑥 and 𝑑𝑦 to produce the same area change 𝑑𝐴. Suppose 

𝑥 = 1 and 𝑑𝐴 = 1. Then 

𝑑𝑥 =
1

8
 but 𝑑𝑦 =

1

4√2
, 

so the distance toward an edge and the distance toward a corner must change at different rates to produce 

the same change in area. Hence there is no single uniform radial increment that produces an area increment 

equal to 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 × 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡. 

3. Conclusion. 

The circle example exhibits a single radial parameter 𝑟 for which 𝑑𝐴 = (𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)𝑑𝑟. The square 

example shows that when boundary distances differ by direction the same identity cannot hold with a 

single size parameter. Therefore, for the differential equality to hold uniformly, the distance from the 

chosen center to the boundary must be constant in every direction. 

If every boundary point is at distance 𝑅 from the center, a small outward increment 𝑑𝑅 produces a thin 

shell whose first-order 𝑛-volume is (𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒) × 𝑑𝑅. Thus, for such radially constant shapes 

(the 𝑛-balls and hyperspheres) the identity 

𝑑𝑉𝑛(𝑅)

𝑑𝑅
= 𝑆𝑛−1 

holds: the derivative of the enclosed 𝑛-volume with respect to 𝑅  equals the (𝑛 − 1)-measure of the 

boundary. 

2.3.  Perfect Shapes in 3D 

Proposition 2.3.1. With the reason for the derivative - integral relationship proven between the area and 

circumference of the circle through the methods stated in Proposition 2.2.1, the same exact relationship 

remains consistent moving onto the formulaic expression of the sphere in the third dimension (its volume) 

to the expression of the sphere in the second dimension (its surface area). 

 

With the volume equation of the sphere, 

𝑉 =
4

3
𝜋𝑟3 

 

Differentiating the given equation would give, 

𝑑𝑉 = 4𝜋𝑟2 

 

And given SA represents the surface area of a sphere, 

4𝜋𝑟2 = 𝑆𝐴 

 

It would lead to this equation after plugging in the respective values, 

𝑑𝑣 = 𝑆𝐴  
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Proposition 2.4.1. Through this relationship shown in Proposition 2.3.1, the sphere becomes the only 

geometric shape that can yield a sound result of overall change in volume found through the net change 

theorem. 

 

Example: Given that you are trying to find the net change between the volume of a sphere when radius 

equals to 1 compared to when the radius is set to 2, the volume of the sphere with radius of 1 would be 

expressed as, 

𝑉(1) =
4

3
𝜋(1)3 

𝑉(1) =
4

3
𝜋 

And the volume of the sphere with radius of 2 would be expressed as, 

𝑉(2) =
4

3
𝜋(2)3 

𝑉(2) =
32

3
𝜋. 

Thereby, the net change of the volume of the given spheres would be 

𝑉(2) − 𝑉(1) 
32

3
𝜋 −

4

3
𝜋 =

28

3
. 

Doing this process again but through the Net change theorem, given the same conditions, 

∫ 𝑆(𝑟)
2

1

𝑑𝑟 = 𝑉(2) − 𝑉(1) 

Because of the derivative-integral relationship between the volume and surface area of the sphere, this 

equation fits in soundly with the formulaic expression of the shape, 

∫
2

1

4𝜋𝑟2𝑑𝑟 =
4

3
𝜋(2)3 −

4

3
𝜋(1)3 

∫
2

1
4𝜋𝑟2𝑑𝑟=

32

3
𝜋 −

4

3
𝜋 =

28

3
. 

Through the work shown, with the equation for the surface area and volume of the sphere, the net 

change theorem can be utilized to find the net change of the volume as the value resulting from the first 

and second calculations, despite different methods being used, are equal. 

Lemma 2.5.1. The existence of the relationship shown in Proposition 2.4.1. is proven by the fact that, 

because every single line connecting the CenterPoint of a sphere to the edge of the sphere is uniform in 

length, if the volume of the sphere increases or decreases at a given constant rate, each vector within said 

sphere will uniformly increase or decrease at a shared rate proportional to the rate of change of the volume:  

 

With the volume equation of the sphere, 

𝑉 =
4

3
𝜋𝑟3 

Differentiating the given equation in respect to time would give the related-rates equation of, 

𝑑𝑉

𝑑𝑡
= 4𝜋𝑟2

𝑑𝑟

𝑑𝑡
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And since, given SA represents the surface area of a sphere, 

4𝜋𝑟2 = 𝑆𝐴 

It would lead in the equation  

𝑑𝑉

𝑑𝑡
= 𝑆𝐴 

𝑑𝑟

𝑑𝑡
 

Thereby, because the rate of change of the volume (
𝑑𝑣

𝑑𝑡
) is the equivalent to the rate of change of the 

radius (
𝑑𝑟

𝑑𝑡
) multiplied by 4𝜋𝑟2 (SA)  if the volume of the sphere expands at a certain rate, it would expand 

4𝜋𝑟2 (SA) times faster than its radius. And because the radius is uniform at every point within the sphere, 

this relationship between the rate of the change of the volume and any vector going from the center of the 

shape to the very edge remains constant regardless of which point is being used, given that it is within the 

same sphere. 

 

Example: Given that 
𝑑𝑉

𝑑𝑡
= 1 and 𝑟 = 1, it creates the equation 

1 = 4𝜋(1)2 𝑑𝑟

𝑑𝑡
, 

 

leading to 
𝑑𝑟

𝑑𝑡
=

1

4𝜋
. 

Because of the fundamental nature of a sphere with it having a uniform length from every point from 

its center of shape to the outer edge, all vectors of the given sphere under given circumstances will be 

moving at a rate of 
1

4𝜋
 in relation to time without exception.  

However, with any other geometric shapes’ expressions as a 3D value, if its volume is increasing at a 

constant rate, it becomes an impossibility for every vector within the shape to be going at a uniform rate. 

 

Counterexample: Using the formula of the cube, 

𝑉 = 𝑥3 

If the equation was to be changed to give the volume of the cube in relation to a line from its center 

point of the overall shape to the center point to a side of the cube given as s, 

𝑉 = (2𝑠)3 

Differentiating the given equation in respect to time would give the related-rates equation of, 

𝑑𝑉

𝑑𝑡
= 24𝑠2

𝑑𝑠

𝑑𝑡
 

If the rate of change of volume in respect to time is given as  
𝑑𝑉

𝑑𝑡
= 1, 

and the distance from the cube’s center to the midpoint of one face is given as 

𝑠 = 1, 

 

It creates the equation 

1 = 6(1)2
𝑑𝑠

𝑑𝑡
 

making it so that 
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𝑑𝑠

𝑑𝑡
=

1

6
. 

Yet, if the equation of the cube was changed to give the volume of the cube in relation to a line from 

its center point to a corner of its side (𝑐), it would become 

𝑉 = (
√2𝑐

2
)3. 

Differentiating the given equation in respect to time would give the related-rates equation of 

𝑑𝑉

𝑑𝑡
=

3𝑐2√2

4

𝑑𝑐

𝑑𝑡
. 

If the rate of change of volume in respect to time was given as, 

𝑑𝑉

𝑑𝑡
= 1 

and the length of the line going from the CenterPoint of the shape to a midpoint on its edge is given as, 

𝑐 = √2 

making it so the length that c (the line from the center of the cube to a  corner of the cube’s edges at its 

midpoint) is the value it would be when s (the line from the center of the cube to the center of a side) is 

equal to 1 as given in the previous geometric scenario, It creates the equation 

1 =
3(√2)2√2

4

𝑑𝑐

𝑑𝑡
 

 

making it so that the rate of change of c in relation to time is, 

𝑑𝑐

𝑑𝑡
=

4

6√2
 

In contrast to the sphere, for the cube, two vectors that are within the exact same shape and having the 

rate of change of the shape’s volume be exactly the same for said shape that the vectors are in, would 

require different rates of change in order to be consistent in the volume they are in. Therefore, under 

constant circumstances, an increase in the volume of a cube would result in the ratio between the rate of 

change of its volume in relation to time to the rate of change of its vectors in relation to time being non-

uniform depending on which vectors are being observed.  

It is exactly because of this disparity that the derivative-integral relationship only occurs between the 

volume and surface area of spheres and no other shapes. It is the only geometric shape whose distance 

from the center of the shape to the outer edge is uniform at every point. 

Thereby through the exact same way as it was established in the formulaic expression of the circle in 

the 2nd dimension with its area and circumference stated in Proposition 2.1, the same integral-derivative 

relation carries on into the 3rd dimension. Thereby, the sphere maintains its definition as a perfect shape 

beyond the second dimension. 
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3.  Formulaic Connection Between Adjacent Dimensions 

Corollary 3.1. Having established the fact that there exists a derivative - integral relationship between the 

circumference and area of the circle as well as between the surface area and volume of a sphere, in both 

the 2nd and 3rd dimension (Proposition 2.2.1, Proposition 2.3.1), it can be said that there is a consistent 

relationship between the formulaic expression of the circle and the sphere between its expression in the 

nth dimension as well as its expression in the n-1 dimension.  

For a circle, which exists in the 2nd dimension, the formulaic expression of it in the correlating 

dimension would be, 𝜋𝑟2 while its expression within the dimension below it would be 2𝜋𝑟.  

For a sphere, which exists in the 3rd dimension, the formulaic expression of it in the correlating 

dimension would be, 
4

3
𝜋𝑟3 while its expression within the dimension below it would be 4𝜋𝑟2.  

Observation 3.2. Through these relationships, an overlap gets created in the second dimension between 

the expression of a circle in its correlating dimension, 𝜋𝑟2, and the expression of the sphere within the 

dimension below it (the 2nd dimension), 4𝜋𝑟2.  

Both of these expressions can be created in terms of the second dimension but are representing shapes 

that are in differing dimensions as 𝜋𝑟2 represents a shape in the correlating dimension, the 2nd, and 4𝜋𝑟2 

represents a shape above the dimension it is expressed for, the 3rd. 

With this new relationship, a factual observation between these two expressions can be made as in, the 

surface area of a sphere equates to the area of a circle multiplied by 4, given that the radius remains 

consistent.  

4 ×  𝜋𝑟2 = 4𝜋𝑟2 

Conjecture 3.3. This relationship arises from the mathematical connection between the equations 

describing a circle in dimension n (expressed both in n-D and (n–1)D) and those describing a sphere in 

dimension (n+1) (expressed both in (n+1)-D and n-D). This connection is formed by multiplying the 

formula of the circle in dimension n by 2𝑛  to result in the formulaic expression of the sphere at nD. 

Formulation 3.4. To quantify this, at the second dimension, meaning 𝑛1 = 2 , 𝜋𝑟2  would be 

representative of the circle in its correlating dimension at 𝑛 = 2, 

2𝜋𝑟 would be representative of the circle expressed as a value in the dimension below the given value 

(2) at 𝑛 = 1 or at 𝑛 − 1. 

 

At the third dimension,  

𝑛1 + 1 = 𝑛2 

𝑛2 = 3 

 

Meaning that when n = 3 or when 𝑛 = 𝑛2 + 1, 
4

3
𝜋𝑟3 would be representative of the sphere in its 

correlating dimension at 𝑛 = 3, 4𝜋𝑟2 would be representative of the sphere expressed as a value in the 

dimension below the given value (3) at 𝑛 = 2 or at 𝑛2 − 1. 
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As stated previously (Conjecture 3.3), when looking at the expressions for when 𝑛 = 2 , the 

expression of the shape at 𝑛1 within the correlating dimension, is multiplied by 2 to the power of 𝑛,  

 2𝑛 ×  𝜋𝑟2 = 4𝜋𝑟2 is found. 

 

Since for both 𝜋𝑟2 and 4𝜋𝑟2, 𝑛 = 2,  

22 ×  𝜋𝑟2 = 4𝜋𝑟2 

4 ×  𝜋𝑟2 = 4𝜋𝑟2 

 

Resulting in the same equation as previously stated (Observation 3.2) 

 

Using the same method, it can be translated to make a prediction of the equation of a sphere in the 4th 

dimension. 

Formulation 3.5. As previously established, at the third dimension, 

𝑛2 = 3 

meaning that when n equals 3, the equation relating directly in terms of that dimension would be 
4

3
𝜋𝑟3. 

And to create the same shape but quantified in the dimension below (n-1), the equation 4𝜋𝑟2 would be 

created. 

 

Moving forward to the dimension above at, 

𝑛3 = 4 

Or, 𝑛3 = 𝑛2 + 1 

 

As stated prior (Conjecture 3.3), within this dimension there would be an expression to describe the 

shape in a way to directly relate the equation to the dimension it exists in at 𝑛3 but also a way in which to 

express the shape created in the 4th dimension but quantified at 𝑛3 − 1 or at 𝑛2, the 3rd dimension as 

𝑛2 = 3.  

 

Thereby, using the equation of the sphere within the 3rd dimension quantified directly related in the 

equivalent n value at  𝑛2 = 3, (
4

3
𝜋𝑟3) the method stated can predict the equation of the sphere in the 4th 

dimension quantified at 𝑛3 − 1 or at  𝑛2 = 3, giving: 

2𝑛 ×
4

3
𝜋𝑟3 

Since 𝑛2 = 3, it would result in, 

23 ×
4

3
𝜋𝑟3 =

32

3
𝜋𝑟3 
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4.  Application of The Derivative-Integral Relationship in the 4th Dimension 

Corollary 4.1. With having found the formulaic expression of the sphere in the 4th dimension or when 

n=4, quantified at the dimension below (n-1 or at n=3), through the integral derivative relationship which 

was previously proven to exist at every dimension for a sphere (Proposition 2.3.1, Proposition 2.2.1), 

applying this method, since at n=4, the expression 
32

3
𝜋𝑟3 is the value quantified at n-1 rather than directly 

related to n, through the integration of the expression, the value quantified at n can be found.  

∫
32

3
𝜋𝑟3 dr =

8

3
𝜋𝑟4 

Through this it can be said that in the 4th dimension when n=4, the shape of the sphere can be 

formulaically quantified within the dimension below (n-1) as 
32

3
𝜋𝑟3 as well as directly quantified at n=4 

by 
8

3
𝜋𝑟4.  

Observation 4.2. If 2 axes were created that would represent the plane of the 2nd dimension (n=2), as the 

2nd is characterized by length and wide (x and y axis), if the area of the circle (𝜋𝑟2) were to be put into 

each quadrant, the combination of all would equal the surface area of a sphere (4𝜋𝑟2).  

 
Figure 1. Square containing 22 circles. 
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Observation 4.3. In the same logic, if 3 axes were created that would represent the plane of the 3rd 

dimension (n=3) as the 3rd dimension is characterized by length, width, and height (x, y, and z), if the 

volume of the sphere (
4

3
𝜋𝑟3) were to be put into each quadrant, the combination of all would equal the 

equation that was found using the previous method stated that would represent the formula for the sphere 

in the 4th dimension but quantified in the dimension below (n-1) as 
32

3
𝜋𝑟3 

 
Figure 2. Cube containing 23 spheres. 

 

Figure 1 demonstrates that the visual relationship between the two expressions at n=2 and at n-1 are 

that the value of the expression at the given value of n (𝜋𝑟2) should fill in every quadrant that is created 

by the axes of the dimension at the given n (in this case n=2) in order to be equal to the value of the 

expression of the shape in the next dimension quantified at n-1 at n=3 (4𝜋𝑟2).  

Translating this to the next value of n at 3, as shown in figure 2, the new axes of z doubles the number 

of quadrants making it so that if each quadrant is filled with the shape of the expression quantified at n at 

n=3 (
4

3
𝜋𝑟2) or the volume of the sphere, the combined value would equate to 8 ×

4

3
𝜋𝑟2 =

32

3
𝜋𝑟2 or 2𝑛 ×

4

3
𝜋𝑟2 =

32

3
𝜋𝑟2. Therefore, since each new axis created within the plane would double the number of 

quadrants within the given plane, the visual representation of this phenomenon supports the formulaic 

expression that was found (Formulation 3.5) 

As previously established (Observation 3.2), the expression of 𝜋𝑟2 × 4 = 4𝜋𝑟2 is one that can be 

used as a factual explanation of the connection between the expressions of the surface area of the sphere 

and the area of the circle. Furthermore, (First figure) is a way to accurately represent this relationship 

visually in a method that fits within the scope of the explanation, maintaining the fact that it is simply a 

factual observation. Using the exact same method and logic as used in the first figure, (second figure) is 

found. And if the image was to be translated to a formula, the visuals in (figure second) matches the 

established equation of 
4

3
𝜋𝑟3 × 8 =

32

3
𝜋𝑟3. 
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Conjecture 4.4. Thereby, since there will be expressions for a shape in both dimensions but quantified in 

terms of a single dimension as stated in (Observation 3.2), an overlap gets created between every 

dimension in which in one dimension, there will exist two expressions, one that directly represents the 

shape at the dimension the expression is quantified in as well as one which represents the shape in the 

dimension above, a possible way to visually represent the connection between the expressions for the same 

shape in adjacent dimensions would be that: Through the combination of the values of the shape that is 

resulting from the expression of the shape in the lower dimension quantified in direct relation to that 

dimension multiplied by the number of quadrants which is created by the axes that arises within the lower 

dimension of two given dimensions, the value of the shape in the higher of the two dimensions expressed 

at n-1 will be found. 

Through this, it creates a consistent explanation both formulaically and visually on how the expression 

that represents a shape at dimension 𝑛1 quantified at n is connected to the expression that represents the 

shape at dimension 𝑛2 quantified at n-1. As stated previously (Conjecture 3.3), the formulaic explanation 

results in the multiplication of the shape at dimension 𝑛1 quantified at n multiplied by 2𝑛 in order to find 

the expression of 𝑛2 at n-1. This relates directly to the visual explanation as each new axis that is added 

to the plain would result in a doubling of the amount of quadrants which exits, meaning that with every 

new dimension, the quadrants will double, meaning the number of shapes multiplied to find the n-1 value 

of the shape in the next dimension will double, or in other words, multiplied by 2𝑛.  

5.  Conclusion 

This paper defined the perfect shape as the sphere due to its derivative-integral relationship across 

every value of n. Furthermore, through this established relationship, the paper proposed the conjecture 

that higher-dimensional formulas for the sphere can be derived through this relationship as well as through 

the multiplication of the expression of the shape at dimension n expressed in direct relation to that 

dimension with 2𝑛 to find the expression of the shape in the next dimension expressed at n-1 due to the 

overlap in n-values. This proposal supports the idea that higher dimensional geometry can be derived 

through the calculus of adjacent dimensions (can site the paper you gave maybe...?) Though unlike 

previous works, this paper gave an abstract conjecture on the inference of what the formulaic expression 

of the sphere in the 4th dimension would be. Though currently an abstract conjecture, the next step for 

research that will proceed this paper is to topologically prove this idea through topological data analysis 

run through AI modeling. 
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