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Abstract

Retinal disorders represent a growing global health crisis, particularly among the working-age population.
While manual screening of fundus imagery is the standard, it remains a labour-intensive process dependent
on specialized expertise. This study addresses the urgent demand for rapid, automated diagnostic tools by
evaluating the efficacy of lightweight Deep learning (DL) architectures for multi-class retinal disease
identification.

Utilizing a public dataset of 4,217 images, the study performed a comparative analysis of four
Convolutional Neural Network (CNN) architectures: MobileNetV2, VGGI16, DenseNetl21, and
EfficientNetB0. Each model was assigned with classifying images into four categories: Normal, Diabetic
Retinopathy, Glaucoma, and Cataract. Experimental results identify MobileNetV2 as the superior model,
achieving a peak accuracy of 94.08%, an Fl-score of 0.9430, and a mean Average Precision (mAP) of
0.9786.

With a calculated efficiency score of 0.4157, MobileNetV2 demonstrates the ideal balance between high
diagnostic precision and low computational demand. These findings highlight that streamlined CNNs are
uniquely suited for real-time deployment in resource-constrained environments. Ultimately, this research
provides a robust foundation for Al-assisted ophthalmic screening, facilitating earlier clinical intervention
and improved patient outcomes globally.

1. Introduction

The global landscape of ocular health is currently facing an unprecedented crisis as the prevalence of
retinal diseases has surged to epidemiological proportions, presenting a formidable challenge to
international public health infrastructures. This escalation is particularly concerning because retinal
pathologies target the delicate neural tissues responsible for visual perception; once these tissues are
significantly compromised, the resulting vision loss is often permanent [1]. Global demographic changes,
particularly the aging population's explosive growth and the sharp increase in systemic metabolic illnesses,
are substantially responsible for the crisis's severity. Among them, diabetes mellitus has become a major
cause of ocular morbidity, making diseases like age-related macular degeneration (AMD), diabetic
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retinopathy (DR), cataracts, and glaucoma worldwide health priorities rather than isolated clinical
anomalies.

The most pervasive of these conditions—Diabetic Retinopathy, glaucoma, and cataracts—each present
unique physiological hurdles that demand early detection. Diabetic Retinopathy originates from chronic
microvascular damage, where sustained hyperglycemia compromises the integrity of retinal blood vessels
[2]. In contrast, glaucoma is characterized by progressive degeneration of the optic nerve, a process
frequently exacerbated by elevated intraocular pressure that restricts the transmission of visual data to the
brain. Meanwhile, cataracts involve the gradual opacification or clouding of the eye’s natural crystalline
lens, creating a physical barrier to light that results in a profound loss of visual clarity. Despite the high
prevalence of these ailments, the current diagnostic paradigm is heavily restricted by its reliance on manual
intervention. Traditional screening protocols require highly specialized ophthalmologists to conduct
painstaking interpretations of fundus photography and Optical Coherence Tomography (OCT) images [3].

This manual, human-centric workflow is inherently unscalable and cannot keep pace with the exponential
growth in patient volume worldwide. To mitigate these limitations, the integration of Artificial Intelligence
(Al) and DL into the domain of medical imaging has initiated a fundamental paradigm shift. This transition
moves clinical practice away from subjective, qualitative assessments toward objective, automated
quantification. Convolutional Neural Networks (CNNs) have established themselves as the industry
standard for these complex image classification tasks due to their unique ability to autonomously derive
hierarchical feature representations from intricate biological data [4].

These artificial networks learn to recognize subtle biomarkers and structural abnormalities that are
essential for precise diagnosis by consuming and evaluating enormous libraries of labeled fundus images
[5]. These advanced CNN techniques aid as a vital force multiplier for the medical community, providing
high-precision diagnostic support that can be effectively deployed in low-resource or geographically
constrained demographic areas. By automating the screening process, these tools ensure that high-quality
eye care is accessible to broader populations, ultimately assisting ophthalmologists in preventing
irreversible blindness.

2. Related Work

Retinal disorders are among the primary causes of unavoidable blindness worldwide, creating an urgent
demand for scalable screening solutions [6]. The traditional approach to detecting these retinal diseases
relies heavily on manual interpretation by ophthalmologists or optometrists, a process that has several
scalability limitations. In order to overcome this, automated methods—including sophisticated
computational techniques—have been developed to more accurately determine the severity of malignancy

[7].

A significant milestone in this domain was achieved by Gulshan et al., who developed a deep CNN
specifically for the successful detection of diabetic retinopathy (DR) and diabetic macular edema from
fundus images. Their applied method demonstrated that DL models could accurately detect early signs of
pathology in addition to diagnosing established eye problems [8].
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Building on this foundation, subsequent studies focused on identifying a broader range of retinal illnesses.
Sarki et al. introduced a DL system designed for the automatic detection of moderate and multi-class
diabetic eye diseases using pre-trained CNNs, expanding the scope beyond binary classification [9].
Similarly, a DL framework for the simultaneous diagnosis of several retinal illnesses, including DR,
Macular Holes (MH), and Optic Disc Cupping (ODC), was suggested by Ejaz S et al. In their study,
statistical criteria including sensitivity, specificity, accuracy, F1-score, recall, and precision were used to
assess performance. The findings showed that their created framework performed promisingly, with
accuracy rates of up to 89.81% for validation using a 12-layer CNN after data augmentation [10].

More recent research has prioritized efficiency for deployment on mobile devices. A lightweight CNN was
suggested by D. K. Qasim et al. for the categorization of two retinal diseases: Macular Hole and Diabetic
Retinopathy, in addition to normal eyes. According to their results, the MobileNetV2 architecture
outperformed NASNetMobile, achieving a highest accuracy of 90.8% compared to 89.5%, proving its
viability for resource-constrained environments [11]. Pushing performance further, Sara Ejaz et al.
presented a DL model using a hybridized CNN for the early detection of retinal diseases from fundus
images. The proposed CNN model achieved a maximum accuracy of 93.39%, outperforming other
classification algorithms in the study and demonstrating the efficacy of hybrid architectures [12].

These architectural advancements are supported by large-scale validation studies. Ting et al. developed a
DL system using retinal images from multi-ethnic populations, validating that such systems could identify
Diabetic Retinopathy, Glaucoma, and Age-related Macular Degeneration with specialist-level accuracy
[13]. Furthermore, the scope of Al has expanded to other imaging modalities; Kermany et al. demonstrated
the ability to identify medical diagnoses and treatable diseases using image-based DL on Optical
Coherence Tomography (OCT) scans, effectively classifying conditions like Choroidal
Neovascularization [ 14]. Finally, the rapid evolution of this field was captured by Asiri et al., whose survey
on DL-based computer-aided diagnosis systems highlights the transition toward end-to-end models that
necessitate negligible human interference while maximizing diagnostic accuracy [15].

3. Methodology
3.1 Dataset Selection and Characterization

This research utilizes DL architectures to facilitate the automated detection and categorization of various
retinal pathologies. The prime data was sourced from a publicly accessible repository on Kaggle,
comprising a total of 4,217 high-resolution fundus images.

The dataset is organized into four distinct categories, representing three specific ocular conditions and a
control group:

o Diabetic Retinopathy (DR)
e (Cataract
e Glaucoma

e Normal (Healthy Retinas)
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To ensure a balanced spreading for model training, each classification contains a relatively uniform
distribution of approximately 1,000 images. The specific breakdown and quantitative distribution of these
images are detailed in Table 1.

Table 1. Division of images in the dataset across training, validation, and testing sets.

Class Name Training images | Validation images | Testing images | Total
Normal 859 129 86 1074
Diabetic Retinopathy | 878 132 88 1098
Glaucoma 806 120 81 1007
Glaucoma 830 125 83 1038

3.2 Implementation methodology

To facilitate the automated categorization of retinal anomalies, this research implemented a series of
lightweight DL frameworks. The dataset was laminated into four distinct diagnostic classes: Normal,
Diabetic Retinopathy, Glaucoma, and Cataract.

The investigation leveraged four specific Convolutional Neural Network (CNN) architectures chosen for
their computational efficiency:

e MobileNetV2

e VGGI16

e DenseNetl21

o EfficientNetB0
To optimize convergence and feature extraction, each technique was adjusted using transfer learning with
pre-trained ImageNet weights. For the final classification stage, the convolutional bases were coupled with
a Multi-Layer Perceptron (MLP) featuring fully connected layers.

Performance Evaluation

The proposed models underwent a rigorous evaluation to assess both predictive power and operational
feasibility. Key metrics included Accuracy, F1-score, Mean Average Precision (mAP), and inference
latency (processing time per image). The experimental outcomes demonstrate the proposed framework’s
reliability and scalability, validating its potential for deployment in diverse clinical diagnostic workflows.

4. RESULTS AND DISCUSSION
4.1 Comparative Performance Analysis

The empirical evaluation of the selected DL architectures revealed distinct variations in predictive
capability, computational efficiency, and inference latency. The quantitative comparison of all
implemented models is summarized in Table 2 and Table 3 shows the efficiency analysis.
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Table 2. Statistical analysis of different DL model’s performance

Model Accuracy | FI-Score | mAP Precision | Recall Param(m) | Inference
(%) Time
(ms)
MobileNetV2 | 94.08 0.9430 0.9786 0.9446 0.9426 2.26 12.266
VGGI16 93.20 0.9327 0.9653 0.9334 0.9350 14.72 6.311
DenseNetl121 | 89.05 0.8918 0.9501 0.8971 0.8975 7.04 34.6
EfficientNetBO | 43.49 0.3556 0.5648 0.3424 0.4619 4.05 22.115

Table 3. Efficiency comparison of CNN models

Model Efficiency Score
MobileNetV2 0.4157

VGG16 0.0633
DenseNetl121 0.1265
EfficientNetB0 10.73

MobileNetV2 emerged as the optimal architecture for this specific domain. It demonstrated superior
overall efficacy, achieving a remarkable efficiency score of 0.4157. Furthermore, it secured the highest
classification metrics across the board, with an accuracy of 94.08%, an F1-score of 0.9430, and a mean
Average Precision (mAP) of 0.9786. These metrics establish MobileNetV2 as the most robust and reliable
model for retinal disease identification in this study.

While MobileNetV2 excelled in accuracy, VGG16 distinguished itself through temporal performance. It
recorded the fastest inference time of 6.3110 ms, making it highly suitable for time-sensitive applications.
Despite prioritizing speed, it maintained a competitive accuracy of 93.20% and an F1-score of 0.9327.

The DenseNet121 model delivered moderate results, yielding an accuracy of 89.05% and an F1-score of
0.8918, falling slightly behind the leading architectures. Conversely, EfficientNetBO demonstrated
suboptimal performance on this specific dataset, recording the lowest accuracy at 43.49% and an F1-score
of 0.3566, indicating potential challenges in feature convergence for this specific task.

To further scrutinize the learning behaviour and diagnostic precision of these models, several visual aids
were generated. Figure 1 illustrates the training dynamics, comparing the loss and accuracy curves over
successive epochs to visualize convergence stability.
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Figure 1. Training histories visualization, including training and validation accuracy and loss over
epochs.

Figure 2 presents a comprehensive performance analysis, highlighting trade-offs between precision and
recall. Figure 3 depicts the confusion matrices for the models, providing a granular view of
misclassification patterns across the four disease categories.
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Figure 2. Comparative analysis graphs of DL models- MobileNetV2, VGG16, DenseNetl121 and

EfficientNetBO.
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Conclusion

The culmination of this research emphasizes the critical role of automated diagnostic systems in
addressing the global burden of retinal pathologies, with a primary focus on the classification of
Glaucoma, Cataracts, and Diabetic Retinopathy against Normal retinal scans. Through the implementation
and rigorous evaluation of several state-of-the-art pre-trained DL architectures—specifically
MobileNetV2, VGG16, DenseNetl121, and EfficientNetBO—this study identifies distinct performance
trade-offs essential for clinical deployment.

MobileNetV2 emerges as the most transformative architecture within this comparative framework,
achieving a superior balance between precision and computational demand. With a peak accuracy of
94.08% and an efficiency score of 0.4157, this model demonstrates exceptional operational viability. Such
metrics indicate that MobileNetV2 can deliver expert-level diagnostic insights with sub-second latency,
making it exclusively suitable for incorporation into resource-constrained mobile devices and remote
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diagnostic kits. While VGG16 demonstrated a slightly lower accuracy of 93.20%, it achieved the fastest
inference time at 6.3110 ms, yielding a robust Fl-score of 0.9327. In contrast, DenseNetl121 and
EfficientNetBO were found to be less effective in this specific context, with DenseNetl121 yielding an
accuracy of 89.05% and a corresponding F1-score of 0.8918.

Ultimately, these findings reaffirm that Convolutional Neural Networks (CNNs) remain the most potent
and efficient methodology for the automated detection of retinal diseases. The success of the MobileNetV2
framework suggests a clear pathway for deploying high-fidelity screening tools in underserved regions
where specialized ophthalmological care is scarce. Future research trajectories should explore the
integration of multi-modal data, combining fundus imagery with longitudinal patient history and metabolic
profiles. Such a holistic approach promises to further refine diagnostic granularity and deliver more
comprehensive provision for clinical decision-making in the fight against preventable blindness.
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