

The New Frontier of Financial Forecasting: A Comprehensive Review of Deep Learning Architectures, Hybrid Models, and the Imperative of Explainable AI in Global Stock Markets

Dr. Jaspal Singh

Associate Professor, Smt. Aruna Asaf Ali Government College, Kalka

Abstract

Accurate stock market forecasting remains one of the most intellectually challenging and financially critical tasks in quantitative finance, driven by the inherent volatility, non-linearity, and chaotic nature of financial time series data. Traditional statistical and econometric models (such as ARIMA) often prove inadequate in capturing the complex, long-term dependencies and multimodal influencing factors, leading to a paradigm shift toward advanced Deep Learning (DL) methodologies. This comprehensive review synthesizes recent research (2022–2025) across diverse global markets, including the S&P 500, the Indian National Stock Exchange (NSE), and cryptocurrency exchanges, to evaluate the efficacy of cutting-edge DL architectures. We focus on the performance of stand-alone Recurrent Neural Network (RNN) variants Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) alongside Convolutional Neural Networks (CNNs) and emerging hybrid models (e.g., CNN-LSTM, LSTM-DNN, LSTM-GNN, and Attention-based architectures). Furthermore, this paper details the critical role of multimodal data fusion, integrating market sentiment derived from financial news and social media (NLP), and addresses the growing demand for Explainable Artificial Intelligence (XAI) to foster transparency and trust in automated investment systems. The evidence overwhelmingly supports the superior predictive power and robustness of hybrid and deep recurrent models, affirming their role in advanced algorithmic trading and robust portfolio optimization.

Keywords: Stock Market Prediction, Deep Learning, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Hybrid Models, Explainable AI (XAI), Financial Time Series, Algorithmic Trading, Sentiment Analysis.

1. Introduction

The stock market is a vast, complex, and dynamic system influenced by a myriad of factors, including macroeconomic indicators, geopolitical events, company-specific announcements, and collective investor sentiment. The accurate prediction of stock prices and market trends is critical for stakeholders, offering

essential insights for informed investment decisions, risk management strategies, and maximizing returns in short-term trading. Historically, financial forecasting relied on linear statistical models like the Auto Regressive Integrated Moving Average (ARIMA) and various econometric approaches. However, these techniques inherently struggle with the non-linear, non-stationary, and chaotic characteristics of modern financial data. The advent of Artificial Intelligence (AI) and, specifically, Deep Learning (DL) has provided a computational mechanism capable of extracting intricate patterns and long-term dependencies that elude traditional models. DL models, characterized by their multi-layered, deep architectures, have been positioned as the new benchmark for financial time series prediction. This paper provides a detailed synthesis of the state-of-the-art research in DL-based stock market prediction. We move beyond a simple comparison of models to explore the critical enhancements necessary for real-world application, namely the development of robust hybrid models, the integration of multimodal data (especially sentiment), and the necessity of Explainable AI (XAI) for practical deployment in a regulated industry. The overall objective is to chart the current performance landscape and identify the emerging research frontiers that promise to bridge the gap between theoretical predictive accuracy and practical algorithmic trading efficacy.

Literature Review: The Evolution of Financial Forecasting Models

The trajectory of stock market prediction research can be segmented into three main eras: classical statistical modelling, early Machine Learning (ML), and the current dominance of Deep Learning.

Limitations of Traditional and Classical Models

Classical statistical models, such as ARIMA and its variants, are highly effective when dealing with time series data exhibiting linear and stationary properties. However, their core assumption of linearity fails dramatically in the face of market efficiency and the complex feedback loops that drive price movements. A direct comparison often reveals that DL models significantly outperform ARIMA by learning and modelling non-linear relationships, confirming the limitations of classical approaches in modern, high-frequency, and volatile financial environments. Early Machine Learning (ML) approaches introduced models like Support Vector Machines (SVM) and Random Forests (RF). While offering better non-linear fitting capabilities than ARIMA, these models are still limited in their capacity to handle long-term sequential dependencies, a crucial characteristic of financial time series. The inherent volatility and erratic patterns of stock prices require models specifically designed to manage temporal correlation.

The Emergence of Deep Learning for Sequence Modelling

Deep Learning models addressed the core weakness of earlier methods by introducing architectures tailored for sequence data: Recurrent Neural Networks (RNNs).

- **Recurrent Neural Networks (RNNs):** RNNs introduced the concept of a hidden state, allowing information from previous time steps to influence the current prediction. They represent the foundational shift in time series modelling. However, traditional RNNs suffer from the vanishing or exploding gradient problem, which makes learning long-term dependencies (i.e., patterns spanning many trading days) computationally infeasible.

- **Long Short-Term Memory (LSTM) Networks:** LSTM networks were developed to explicitly overcome the vanishing gradient problem through the introduction of specialized memory cells and sophisticated gating mechanisms: the input gate, the forget gate, and the output gate. These gates allow the model to selectively remember or discard information over long sequences, making LSTMs the dominant architecture for stock price prediction since their adoption. LSTMs have demonstrated high success rates, such as achieving an impressive 94% accuracy in predicting the trend of Tesla stock data and proving effective for portfolio optimization in both stock and cryptocurrency markets.
- **Gated Recurrent Units (GRU):** GRU is a streamlined variant of LSTM, simplifying the gating mechanism into two main gates (reset and update). Research focusing on the Indian stock market (NSE India) found that the GRU model often exhibited dominance over various LSTM architectures across different market sectors, suggesting its efficiency and simpler structure can be advantageous in certain contexts.

Hybrid Models: Synergy for Robustness

The cutting edge of research moves beyond single-model architectures toward hybrid models that leverage the strengths of multiple components to achieve greater predictive robustness. This synthesis of models is designed to handle the multi-faceted nature of financial data, where different patterns (local vs. temporal) require specialized processing.

Advanced Deep Learning Architectures and Multimodal Fusion

The most significant advancements in modern financial forecasting stem from incorporating multi-component models and enriching the input data with non-price information.

Feature Engineering and Technical Indicators

A critical finding across multiple studies is that a model trained solely on raw price data is inherently limited. Superior predictive performance is achieved by incorporating Technical Indicators (TIs) mathematical transformations of price and volume data (e.g., Moving Averages, Relative Strength Index (RSI), MACD) as input features. The adjusted stock price, combined with 12 technical index variables, was shown to significantly increase the accuracy of an LSTM model in the Tehran Stock Exchange, illustrating that TIs provide local pattern recognition that aids the sequence models.

Multimodal Data Fusion: Integrating Market Sentiment (NLP)

Financial markets are driven by human emotion and information flow, making market sentiment a non-negotiable feature for accurate prediction.

- **The NLP Imperative:** Recent methodologies have focused on Natural Language Processing (NLP) to quantify investor sentiment from unstructured text data like financial news articles and social media feeds (e.g., Twitter).

- **Deep Fusion Models:** A powerful multimodal deep fusion model was proposed, which leveraged a BERT-based model (fine-tuned on financial news) to process sentiment alongside an LSTM branch to capture temporal patterns in multivariate data (prices and TIs). This fusion approach demonstrated superior modelling power compared to models that analyse modalities in isolation, highlighting the importance of concurrently processing both fundamental market data and informational drivers. Another study integrated CNN and LSTM, classifying tweets using a Random Forest algorithm to incorporate sentiment into the final prediction, confirming that fusing candlestick data with social network insights facilitates a more detailed and accurate examination of market trends.

Prominent Hybrid Architectures

The combination of different DL components addresses multiple aspects of the financial time series simultaneously.

CNN-LSTM Hybrids

The Convolutional Neural Network (CNN) excels at extracting local, hierarchical features and patterns, particularly effective when stock data is treated as an image or a sequence of local patterns. By stacking a CNN layer before an LSTM layer, the model first extracts relevant features (the CNN's role) and then models their temporal dependencies over time (the LSTM's role). This CNN-LSTM hybrid has been applied effectively to forecast the Indian stock market and for robust portfolio optimization in the cryptocurrency market, overcoming the limitations of traditional mean-variance optimization by providing forward-looking predictions.

LSTM-DNN and GRU-LSTM Hybrids

To enhance generalizability and robustness across volatile markets, a hybrid LSTM and Deep Neural Network (DNN) model was developed. This model was uniquely validated on 26 real-life datasets to prove its robustness in handling high volatility and intricate market patterns, moving beyond the single-dataset validation common in the field. The intentional combination of GRU and LSTM the Hybrid GRU-LSTM is proposed as an advanced technique to leverage the complementary gating mechanisms of both models, optimizing the balance between complexity and efficiency.

The New Frontier: LSTM-GNN Synergy

An emerging research direction involves the synergy between LSTM and Graph Neural Networks (GNNs). GNNs are designed to model complex relational data, which is highly relevant in a stock market where the price of one asset (e.g., a bank stock) is structurally related to others (e.g., other bank stocks, or the overall index). Integrating the GNN's capability to model these cross-asset dependencies with the LSTM's strength in sequential prediction represents a "New Frontier" for capturing the holistic dynamics of the stock market.

Comparative Performance Summary

The comparative analysis across the reviewed papers consistently points to the superior performance of deep recurrent networks, often with a slight edge to hybrids that intelligently combine models for feature extraction and sequence modelling. The table below summarizes key performance findings across different models and datasets.

Table 1: Comparative Analysis of Dominant Deep Learning Models and Architectures

Model Architecture	Core Mechanism	Key Finding/Application Context	Evaluation Metrics Cited
LSTM	Captures long-term temporal dependencies via gating mechanism (Forget, Input, Output gates).	Highly effective for S&P 500 and general stock price forecasting; achieved 94% accuracy on Tesla stock trend prediction.	MSE < 0.01 (S&P 500), Accuracy (Tesla)
GRU	Simplified gating mechanism (Reset and Update gates) for sequence processing efficiency.	Demonstrated dominance over various LSTM variants in forecasting across distinct sectors on the NSE India.	MAE, MSE, R-Squared
Hybrid CNN-LSTM	CNN for extracting local features/patterns; LSTM for sequential time-series modelling.	Applied to cryptocurrency prediction for robust portfolio optimization; excels in Indian stock market forecasting.	RMSE, MAE, R-Squared
Hybrid LSTM-DNN	Combines LSTM with a multi-layered DNN for non-linear mapping of the final output features.	Proved robust performance and generalization capability through rigorous testing on 26 distinct real-life datasets.	RMSE, MAE, MAPE
Multimodal Deep Fusion	BERT-based NLP for sentiment + LSTM for price/TI features; attention layer may be included.	Significantly enhanced predictive accuracy by incorporating financial news headlines and social media sentiment.	Accuracy, F1-Score
PLSTM-TAL (Novel)	Peephole LSTM with a Temporal Attention Layer.	Proposed for enhanced stock market prediction, leveraging attention to weight important historical time steps.	N/A (Proposed model, superior performance claimed)

The Imperative of Explainable AI (XAI) in Financial Markets

Despite the significant advances in predictive accuracy offered by deep learning, their "black-box" nature presents a profound challenge to their widespread adoption in high-stakes financial environments. The lack of transparency limits investor trust, hinders regulatory compliance, and complicates risk management.

The Accuracy-Interpretability Trade-off

The trade-off between maximizing prediction accuracy and maintaining sufficient interpretability is a central dilemma in financial DL research. For a quantitative trading system to be ethically and legally sound, it must be able to provide a coherent explanation for its output. For instance, knowing *which* technical indicator or *what* piece of news sentiment drove a prediction is often more valuable to a fund manager than the raw prediction itself.

XAI Techniques for Deep Learning

Research is actively addressing this gap by applying and comparing various XAI methods, such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations), to DL models for financial forecasting.

- **Enhancing Trust and Accountability:** These techniques help map the opaque neural network layers back to the original input features (e.g., specific price changes or sentiment scores), quantifying the contribution of each feature to the final forecast. This process is essential for enhancing the transparency, trust, and overall accountability of AI models in the finance sector.
- **Actionable Insights:** By identifying which features (e.g., a sudden jump in trading volume or extremely negative social media sentiment) were decisive, XAI provides actionable insights that can be integrated into broader investment research and decision-making systems. Future research aims to fully integrate XAI frameworks into the deployment pipeline of these hybrid DL models to ensure that high performance is accompanied by high fidelity explanation.

Applications in Algorithmic Trading and Portfolio Management

The predictive models reviewed here are not merely academic exercises; their ultimate utility lies in their application to real-world financial operations.

Algorithmic Trading Strategies

Algorithmic trading (AT) relies on rapid, automated execution of complex strategies. The high speed and accuracy provided by DL models, particularly those capable of short-term price trend prediction, are essential for modern AT systems. LSTMs and GRUs, due to their sequence-to-sequence capabilities, are used to forecast price movements a few steps ahead, which directly informs buy/sell decisions in high-frequency environments.

Robust Portfolio Optimization

Traditional portfolio optimization, such as Markowitz's mean-variance theory, is limited by its reliance on historical, backwards-looking estimates of expected returns and risk. The integration of DL models, specifically the hybrid CNN-LSTM, introduces a forward-looking prediction component into the optimization framework.

- **Cryptocurrency Context:** This method has been applied to the cryptocurrency market, where volatility is extremely high, to construct portfolios that are more robust and better optimized than those relying purely on historical data. The DL model predicts the future returns of multiple assets, and these forecasts are then fed into the mean-variance optimizer, leading to a DL-enhanced portfolio management system. This application demonstrates the seamless transition of predictive accuracy into demonstrable economic utility.

Conclusion and Future Directions

The evidence synthesized from the latest academic literature unequivocally positions deep learning as the most effective methodology for overcoming the pervasive challenges of non-linearity and complex temporal dependencies in financial forecasting. The field has evolved from stand-alone RNNs (LSTM, GRU) to sophisticated hybrid and multimodal architectures that fuse historical price, technical indicators, and critical sentiment data derived from NLP.

Key findings include the notable robustness and high predictive accuracy of the LSTM model, the competitive performance and efficiency demonstrated by the GRU model, and the enhanced feature extraction achieved through CNN-LSTM and LSTM-DNN hybrids. Research on the Indian stock market (NSE) confirms these models' applicability across diverse national exchanges, while work on cryptocurrency and the S&P 500 proves their generalizability.

Future research directions, as indicated by the most recent publications, must focus on three primary areas:

1. **GNN Integration:** Further exploration of LSTM-GNN synergy to effectively model and predict cross-asset dependency, moving beyond single-asset forecasting to a truly systemic market view.
2. **Advanced Temporal Modelling:** Continuing to refine attention mechanisms, such as those in Transformer models and Attention-LSTM hybrids, to dynamically weigh the importance of past information in real-time.
3. **Standardizing XAI:** Developing standardized, efficient, and computationally non-prohibitive methods for incorporating Explainable AI (LIME, SHAP) into every deployed financial model, thereby satisfying regulatory, risk, and trust requirements while maintaining the high accuracy that deep learning promises.

By pursuing these integrated approaches hybridization, multimodal data, and explainability the financial technology community can transform complex deep learning predictions into trustworthy, profitable, and globally accepted decision-support systems for the next generation of investment and risk management.

References

1. Acharya, A., Dunsin, D., Ghanem, M. C., Bellalouna, S., & Kheddar, H. (2025). Empirical evidence on deep learning-enhanced portfolio optimization: integrating CNN-LSTM forecasts with mean-variance theory in cryptocurrency markets. *Journal of Financial Stability*.
2. Alam, K., Bhuiyan, M. H., Haque, I. U., Monir, M. F., & Ahmed, T. (2024). Enhancing Stock Market Prediction: A Robust LSTM-DNN Model Analysis on 26 Real-Life Datasets. *IEEE Access*, 12, 122753-122768.
3. Barua, M., Kumar, T., Raj, K., & Roy, A. M. (2024). Comparative Analysis of Deep Learning Models for Stock Price Prediction in the Indian Market. *FinTech*, 3(4), 423-441.
4. Bhuvaneshwari, S., Rajini, S. N. S., Narayanan, P. C. L., Kunal, K., Madeshwaren, V., & Anbarasu, S. (2025). Stock Price Prediction in India: Comparing Stochastic Differential Equations with MCMC, LSTM, and ARIMA Models and Exploring a Hybrid Approach. *International Journal of Computational and Experimental Science and Engineering*, 11(2), 2155-2160.
5. Chen, P., Boukouvalas, Z., & Corizzo, R. (2024). A deep fusion model for stock market prediction with news headlines and time series data. *Neural Computing and Applications*, 36(28), 21229-21271.
6. Chen, Y. (2023). Designing an Investment Research System for Asset Management Based on Natural Language Processing. Master's Thesis, Massachusetts Institute of Technology.
7. Chourasia, A., & Gupta, N. K. (2024). Stock Market Trend Prediction Using Deep Learning and Optimization Methods: A Review. *International Journal of Creative Research Thoughts*, 12(7), 543-551.
8. Gaikwad, D. V., & Kanase, J. M. (2025). "A Hybrid Lens on Stock Prediction: Exploring LSTM and RNN Models". *Journal of Emerging Technologies and Innovative Research*, 12(6), 117-123.
9. Giantsidia, S., & Tarantola, C. (2025). Deep learning for financial forecasting: A review of recent trends. *International Review of Economics and Finance*, 104, 104719.
10. Groenewald, D. E. S., Hussein, K. S., Hamidi, I. A., & Mehta, J. V. (2024). A Comparative Analysis of Deep Learning Models for Short-Term Stock Price Prediction. *Journal of Informatics Education and Research*, 4(1), 1-10.
11. Heydarpour, M., Ghanbari, H., Mohammadi, E., & Shavvalpour, S. (2025). Robust Portfolio Optimization using LSTM-based Stock and Cryptocurrency Price Prediction: An Application of Algorithmic Trading Strategies. *Iranian Journal of Accounting, Auditing and Finance*, 9(3), 151-169.
12. Kabir, S., Hossain, M. S., & Andersson, K. (2025). A Review of Explainable Artificial Intelligence from the Perspectives of Challenges and Opportunities. *Algorithms*, 18(9), 556.
13. Kolambe, M., & Arora, S. (2024). Comparative Analysis of LSTM Variants for Stock Price Forecasting on NSE India: GRU's Dominance and Enhancements. *International Journal of Information Technology and Computer Science*, 16(6), 43-60.
14. Kuppan, K., Acharya, D. B., & Divya, B. (2024). LSTM-GNN Synergy: A New Frontier in Stock Price Prediction. *Journal of Advances in Mathematics and Computer Science*, 39(12), 95-109.

15. Latif, S., Javaid, N., Aslam, F., Aldegeishem, A., Alrajeh, N., & Bouk, S. H. (2024). Enhanced prediction of stock markets using a novel deep learning model PLSTM-TAL in urbanized smart cities. *Heliyon*, 10(11), e27747.
16. Li, D., & Liao, I. (2024). Research on Efficient Stock Prediction Method Based on LSTM Network. In: T. Li, Z. Wang (Eds.), *Applied Informatics and Communication Technologies*, 1-10.
17. Patil, P., Khandare, N., Nadar, K., Gupta, D., & Sahani, D. (2023). Stock Market Prediction Using LSTM. *International Journal of Creative Research Thoughts*, 11(4), 654-661.
18. Shah, J., Vaidya, D., & Shah, M. (2022). A comprehensive review on multiple hybrid deep learning approaches for stock prediction. *Intelligent Systems with Applications*, 16, 200111.
19. Shahbandari, L., Moradi, E., & Manthouri, M. (2024). Stock Price Prediction using Multi-Faceted Information based on Deep Recurrent Neural Networks. *arXiv preprint arXiv:2411.19766*.
20. Singh, J., & Singh, G. (2024). Deep Learning for Financial Forecasting: Evaluating CNN and CNN-LSTM in Indian Stock Market Prediction. *Journal of Management World*, 5(2), 217-237.
21. Singh, S. K., Sulekh, R., Kumar, A., Verma, A., & Singh, M. (2023). Stock Price Prediction Using LSTM on Indian Share Market. *International Journal of Novel Research and Development*, 8(5), 754-762.
22. Sisodia, L. S., & Khare, A. (2024). ENHANCING MARKET TREND FORECASTING WITH EXPLAINABLE AI: A COMPARATIVE ANALYSIS OF DEEP LEARNING MODELS AND INTERPRETABILITY TECHNIQUES. *ShodhKosh: Journal of Visual and Performing Arts*, 5(3), 1712-1722.
23. Yadav, R., Sengupta, R., Patil, A., & Yadav, R. S. (2023). Stock Market Trend Prediction using Artificial Intelligence Algorithm (RNN-LSTM) - Comparison with Current Techniques and Research on its Effectiveness in Forecasting in Indian Market and US Market. *Empirical Economics Letters*, 22(Special Issue 2), 123-133.
24. Xiao, J., Bi, S., & Deng, T. (2024). Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction. *arXiv preprint arXiv:2411.05790*.
25. Qila, Y. (2024). Research on Stock Price Prediction Based on LSTM Model and Random Forest. *Proceedings of the 2nd International Conference on Management Research and Economic Development*, 1234-1241.
26. Hema, K., Mounika, B., Mounesh, A., Reddy, C. S., & Babu, C. M. (2025). Advanced Stock Market Prediction Using Hybrid GRU-LSTM Techniques. *International Journal of Advanced Research in Interdisciplinary Education*, 11(1), 1236-1242.
27. Boroumand, O., & Doaei, M. (2024). Developing a Stock Market Prediction Model by Deep Learning Algorithms. *Journal of Information Technology Management*, 16(3), 115-131.
28. Saberironaghi, M., Ren, J., & Saberironaghi, A. (2024). Stock Market Prediction Using Machine Learning and Deep Learning Techniques: A Review. *Applied Math*, 5(1), 76-92.