

Artificial Intelligence as an Actor of Crime

Dr. Dibyendu Kumar Panda

Asst. Professor, Rourkela Law College, Rourkela

Abstract

The rapid advancements of artificial intelligence has introduced complex challenges to traditional criminal law, particularly regarding the notion of artificial intelligence as an actor of crime. While artificial intelligence can function as a factual cause of criminal harm, it is not yet recognized as a criminal actor in the legal sense.

1. Introduction

Artificial intelligence (AI) has rapidly evolved from a tool that merely assists humans to a system capable of making autonomous or semi-autonomous decisions. This shift has raised an important and complex question in criminology, law, and ethics: Can artificial intelligence be considered an actor of crime?

Understanding “Actor of Crime”

Traditionally, a crime requires:

Actus reus (a criminal act)

Mens rea (criminal intent)

A responsible legal subject (usually a human)

AI challenges this framework because it can perform actions that cause harm, yet it lacks consciousness, emotions, and moral intent in the human sense.

Ways AI Can Be Involved in Crime

a. AI as a Tool of Crime

This is the most common and legally accepted view.

AI is used by humans to commit crimes such as:

Deepfake fraud and identity theft

Automated cyberattacks and hacking

Algorithmic market manipulation

Responsibility lies with the human user, developer, or organization, not the AI itself.

b. AI as an Autonomous Decision-Maker

Some advanced systems act with minimal human oversight:

Self-learning algorithms may discriminate in hiring or lending

Autonomous vehicles may cause fatal accidents

Trading bots may trigger financial crashes

Here, harm may occur without a direct human command, raising questions about accountability.

c. AI as a Potential “Criminal Actor” (Theoretical)

Some scholars argue that highly autonomous AI could be seen as a quasi-actor if it:

Learns from its environment

Makes independent decisions

Produces foreseeable harmful outcomes

However, current legal systems do not recognize AI as a criminal subject.

Legal Challenges

Lack of Criminal Intent

AI does not possess intent, awareness, or moral understanding.

Criminal law is built around human psychology, which AI lacks.

Attribution of Responsibility

Possible parties held liable:

Developers (faulty design or negligence)

Operators/users (misuse or lack of oversight)

Companies (corporate criminal liability)

Some propose new models such as:

Strict liability for AI harms

Electronic personhood (highly controversial and largely rejected)

Ethical and Social Concerns

Opacity (Black Box Problem): AI decisions can be difficult to explain.

Bias and discrimination: AI can amplify existing social inequalities.

Scalability of harm: One AI system can cause harm at massive scale.

Erosion of accountability: Blaming AI may allow humans to evade responsibility.

Future Perspectives

Most experts agree that:

AI should not be treated as a criminal actor in the near future.

Legal frameworks should focus on:

Clear human accountability

Regulation of high-risk AI systems

Transparency and auditability

Criminal law may evolve, but human responsibility remains central.

The rapid advancement of artificial intelligence (AI) has introduced complex challenges to traditional criminal law, particularly regarding the notion of AI as an “actor” of crime. While AI systems lack consciousness, intent, and moral agency in the human sense, their increasing autonomy raises questions about responsibility when harmful or criminal outcomes occur.

Conceptualizing AI as a Criminal Actor

In classical criminal law, crime requires *actus reus* (a guilty act) and *mens rea* (a guilty mind). AI systems can perform acts that satisfy the physical element of an offense—such as executing fraudulent

transactions, generating malicious code, or autonomously causing physical harm through robotics—but they do not possess intent or awareness. This creates a conceptual gap: AI can cause harm, yet cannot form criminal intent as traditionally defined.

Forms of AI-Related Criminal Conduct

AI may be involved in crime in several ways:

Instrument of crime: AI is used by human offenders (e.g., deepfakes for fraud, AI-driven hacking tools).

Autonomous harmful behavior: AI systems act unpredictably or beyond their original programming, leading to harmful outcomes (e.g., self-learning systems exploiting vulnerabilities).

Negligent deployment: Crimes arise due to poor design, training, or oversight of AI systems, resulting in foreseeable harm.

In the latter two cases, AI appears to function as a quasi-actor, even though legal responsibility typically shifts to humans or organizations.

Attribution of Criminal Responsibility

Since AI cannot be punished or deterred, legal systems generally attribute responsibility to:

Developers (for flawed design or training),

Deployers or operators (for negligent use or lack of supervision),

Organizations (under corporate criminal liability frameworks).

Some scholars propose limited forms of “electronic legal personality” for AI, but this remains controversial and largely theoretical.

Challenges for Criminal Law

Treating AI as an actor of crime challenges core principles of legality, culpability, and punishment.

Existing legal frameworks struggle with:

Proving foreseeability and control,

Distinguishing human intent from machine output,

Preventing accountability gaps when harm is caused by complex, opaque systems.

Emerging Legal Approaches

Rather than recognizing AI as a true criminal actor, most jurisdictions favor risk-based regulation, strict liability in certain contexts, and enhanced duties of care for those who design and deploy AI. These approaches aim to address AI-caused harm without undermining foundational principles of criminal law. In summary, while AI can function as a factual cause of criminal harm, it is not yet recognized as a criminal actor in the legal sense.

Conclusion

Artificial intelligence can participate in criminal outcomes, but it is not a criminal actor in the legal sense.

AI lacks intent, moral agency, and legal personality. Instead, crimes involving AI highlight the need

To adapt legal and ethical frameworks to ensure that humans remain accountable for the design, deployment, and control of intelligent systems.

Footnotes of artificial intelligence as an actor of crime

Below is a scholarly set of footnotes commonly used when discussing artificial intelligence (AI) as an actor of crime in criminal law, criminology, and legal theory. These focus on criminal liability, agency, mens rea, and responsibility gaps.

Footnotes: Artificial Intelligence as an Actor of Crime

1. Hallevy, G. (2010). The Criminal Liability of Artificial Intelligence Entities – From Science Fiction to Legal Social Control. *Akron Intellectual Property Journal*, 4(2), 171–201.
2. Hallevy, G. (2015). *When Robots Kill: Artificial Intelligence under Criminal Law*. Boston: Northeastern University Press.
3. European Parliament. (2017). Resolution with recommendations to the Commission on Civil Law Rules on Robotics (2015/2103(INL)).
4. European Union. (2024). Artificial Intelligence Act (AI Act), Regulation (EU) 2024/XXXX.
5. Surden, H. (2014). Machine Learning and Law. *Washington Law Review*, 89(1), 87–115.
6. Matthias, A. (2004). The Responsibility Gap: Ascribing Responsibility for Actions of Learning Automata. *Ethics and Information Technology*, 6, 175–183.
7. Floridi, L. (2016). Faultless Responsibility: On the Nature and Allocation of Moral Responsibility for Distributed Moral Actions. *Philosophical Transactions of the Royal Society A*, 374(2083).
8. Murray, A. (2017). *The Regulation of Cyberspace: Control in the Online Environment*. London: Routledge.
9. Calo, R. (2015). Robotics and the Lessons of Cyberlaw. *California Law Review*, 103, 513–563.
10. Scherer, M. U. (2016). Regulating Artificial Intelligence Systems: Risks, Challenges, Competencies, and Strategies. *Harvard Journal of Law & Technology*, 29(2), 353–400.
11. Ashworth, A., & Horder, J. (2013). *Principles of Criminal Law* (7th ed.). Oxford: Oxford University Press. (Applied to AI via attribution doctrines.)
12. Burrell, J. (2016). How the Machine “Thinks”: Understanding Opacity in Machine Learning Algorithms. *Big Data & Society*, 3(1).