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Abstract 

Accurate classification of ophthalmic lesions depends on robust feature engineering and transparent 

machine learning (ML) pipelines. We propose an ensemble ML‑based framework for diagnosing eye 

herpes (NAGIN) using a simulated dataset of 712 anterior eye images (350 herpes‑like, 362 non‑herpes). 

Five features - fractal dimension, solidity, eccentricity, branching index, and terminal bulb ratio, were 

extracted from segmented contours and used for supervised learning. Six ML classifiers were evaluated: 

logistic regression, support vector machine (RBF kernel), random forest, gradient boosting, XGBoost, and 

k‑nearest neighbours. Performance was assessed using accuracy, precision, recall, F1‑score, and AUC. 

Ensemble methods delivered perfect diagnostic outcomes, with Random Forest, Gradient Boosting, and 

XGBoost achieving 100% accuracy, F1‑score, and AUC. Logistic regression and SVM gave excellent 

results, with accuracy around 98.6% and an AUC close to 1. In comparison, KNN did a bit worse, reaching 

about 96.5% accuracy and an AUC of 0.983. Feature importance analysis identified fractal dimension, 

branching index, and terminal bulb ratio as dominant predictors, while correlation analysis reinforced 

biological plausibility by linking dendritic branching with fractal complexity and elongated morphology 

with reduced solidity. These results highlight the value of engineered shape features combined with 

ensemble ML strategies for reliable ophthalmic diagnosis and provide a scalable foundation for 

Explainable Artificial Intelligence (EAI) in Medical Image Analysis (MIA). 
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1. Introduction 

1.1 Problem Formulation 

One of the main reasons for infectious corneal blindness in the world is herpes simplex virus (HSV) 

keratitis. Clinically, HSV ulcers frequently manifest as irregularly shaped dendritic or amoeboid lesions 

that resemble bacterial, fungal, or traumatic corneal ulcers. Precise diagnosis is essential because incorrect 

diagnosis can result in inappropriate treatment, such as corticosteroid use in non-herpes ulcers or delayed 

antiviral therapy in HSV cases; this may result in permanent eyesight cost (Labib et al., 2022). 

Conventional diagnostic methods rely on clinician expertise and slit-lamp examination, both of which are 

subjective and variable by nature. In settings with limited resources, laboratory confirmation techniques 

like PCR or viral culture are not frequently available, which makes prompt diagnosis even more difficult. 

These difficulties demonstrate the requirement for computational methods that offer objective, repeatable, 

http://www.aijfr.com/


 

Advanced International Journal for Research (AIJFR) 

E-ISSN: 3048-7641   ●   Website: www.aijfr.com   ●   Email: editor@aijfr.com 

 

AIJFR26013060 Volume 7, Issue 1 (January-February 2026) 2 

 

and comprehensible assistance in distinguishing HSV ulcers from other corneal diseases. Our study 

addresses this scope of work by constructing a simulated ophthalmic database of eye herpes, extracting 

interpretable shape descriptors, and benchmarking multiple supervised classifiers. By integrating feature 

engineering with ensemble learning approaches, the framework demonstrates how transparent and 

reproducible machine learning pipelines can be applied to domain‑specific datasets. Beyond the medical 

application, the work contributes to the broader field of information systems by illustrating the 

methodological value of feature engineering and ensemble learning in designing explainable 

computational models. Conventional diagnostic methods rely on clinician expertise and slit-lamp 

examination, both of which are subjective and variable by nature. In settings with limited resources, 

laboratory confirmation techniques like PCR or viral culture are not frequently available, which makes 

prompt diagnosis even more difficult. These difficulties demonstrate the requirement for computational 

methods that offer objective, repeatable, and comprehensible assistance in distinguishing HSV ulcers from 

other corneal diseases. Our study addresses this scope of work by constructing a simulated ophthalmic 

database of eye herpes, extracting interpretable shape descriptors, and benchmarking multiple supervised 

classifiers. By integrating feature engineering with ensemble learning approaches, the framework 

demonstrates how transparent and reproducible machine learning pipelines can be applied to 

domain‑specific datasets. Beyond the medical application, the work contributes to the broader field of 

information systems by illustrating the methodological value of feature engineering and ensemble learning 

in designing explainable computational models. 

 

1.2 Proposed Solution 

Figure 1, illustrates the workflow for shape‑based feature engineering, starting with simulated ophthalmic 

images, progressing through shape extraction and feature selection, and concluding with ensemble 

machine learning classification to predict Eye Herpes (NAGIN). 

 

Figure 1. Workflow of shape‑based feature engineering using ensemble machine learning on simulated 

ophthalmic Eye Herpes (NAGIN) diagnosis. 
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1.3 Research Objectives 

The primary objective of our work is to design and evaluate an Ensemble Machine Learning (EML) 

framework for NAGIN / Ocular Herpes (HSV) diagnosis by applying shape‑based feature engineering to 

a simulated ophthalmic database. Specifically, the research aims to construct a dataset of anterior eye 

images representing herpes‑like and non‑herpes corneal ulcers, with outlier injection to mimic real‑world 

variability; to extract biologically meaningful morphological descriptors such as fractal dimension, 

solidity, eccentricity, and branching index from segmented lesion contours; and to benchmark multiple 

supervised classification models, including Random Forest, SVM, Logistic Regression, XGBoost, and 

KNN, using accuracy, F1 score, and AUC as performance metrics. To authenticate the diagnostic 

relevance of these descriptors, additionally, research seeks to analyze feature importance and correlations. 

This will create a repeatable framework that combines feature engineering and ensemble learning and may 

be extended to clinical datasets and ophthalmic diagnostic workflows. 

 

1.4 Clinical Background 

Ocular herpes (NAGIN), a herpes simplex virus infection (usually HSV‑1), causes herpes simplex keratitis 

(HSK), which presents as dendritic corneal ulcers that are structurally complex, branching lesions that can 

be quantified using descriptors of fractal dimension, branching index, solidity, and eccentricity. By 

incorporating these clinically significant characteristics into the methodological framework, the 

computational analysis is guaranteed to stay consistent with recognized diagnostic markers of HSV 

infection. 

1.5 Hypotheses 

Based on the scientific framework employed in this investigation and the clinical features of HSV corneal 

ulcers, the following hypotheses were formulated: 

 H1: In distinguishing herpes‑like from non‑herpes lesions, ensemble learning models (Random 

Forest, Gradient Boosting, XGBoost) will outperform simpler classifiers (Logistic Regression, 

SVM with RBF kernel, and k‑Nearest Neighbours) in terms of Accuracy, F1‑score, and AUC. 

 H2: Fractal dimension, branching index, and terminal bulb ratio will emerge as the most 

discriminative features, reflecting dendritic complexity, branching morphology, and localized 

swelling patterns typical of HSV ulcers. 

 H3: Solidity and eccentricity will provide complementary diagnostic value by differentiating 

compact bacterial or fungal ulcers from fragmented and elongated viral lesions. 

 H4: Simpler models (Logistic Regression, KNN) will show reduced robustness when outliers are 

introduced into the dataset, whereas ensemble approaches will maintain stability due to their ability 

to handle noisy data. 

 H5: Correlation analysis of morphological features will reveal biologically meaningful 

associations, including a positive relationship between fractal dimension and branching index, and 

a negative correlation between solidity and eccentricity. 

Figure 2, shows the Conceptual framework of Hypothesis from H1 to H5 linking features, classifiers, 

metrics, and outcomes in Eye Herpes (NAGIN) diagnosis. 
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Figure 2. Conceptual framework of Hypothesis from H1 to H5 linking features, classifiers, metrics, and 

outcomes in Eye Herpes (NAGIN) diagnosis. 

 

 
The arrows annotated between the hypothesis in the above figure 2, illustrate the expected relationships 

between morphological features, supervised classifiers, performance metrics, and diagnostic outcomes. 

The conceptual framework provides a structured map of the study’s predictive assumptions and supports 

the integration of explainable-ML into ophthalmic diagnostics. 

 

2. Literature Review 

Survey of Existing Work 

Herpes simplex keratitis (HSK) / eye herpes (NAGIN) is a leading cause of corneal blindness worldwide, 

characterized by recurrent episodes that complicate management and long-term outcomes. Dysfunctional 

senescent HSV-specific CD57+CD8+T cells have been linked to symptomatic recurrences in 

immunological studies (Chentoufi et al., 2025), and comorbidity analyses demonstrate varied PCR 

positivity in keratitis, corneal erosions, and ulcers (Dandachli et al., 2025). A substantial worldwide burden 

is estimated by epidemiological reviews (McCormick et al., 2022), and correlations with systemic factors 

like COVID-19 immunization have also been documented (Lee et al., 2024). The biology, symptoms, and 

treatment of herpetic eye illness were established by classical research (Zhu et al., 2014). Staining, 

immunofluorescence, and PCR assays have improved the diagnostic process (Farhatullah, 2003). 

Recurrences have been linked to psychological stress (Herpetic, 2000), highlighting the complex nature 

of illness progression. 

 

2.1 Data Resources and Simulation 

The development of AI now heavily relies on large-scale datasets. Synthetic images have been 

demonstrated to improve diagnostic training (Xie et al., 2025), and international corneal and ocular surface 

disease databases for EHRs (Ting et al., 2025) and frameworks for balanced corneal image repositories 

(Ndebele et al., 2025) offer standardized resources. Bibliometric analyses demonstrate the increasing focus 

of research on HSV keratitis and AI-based diagnostics (Song et al., 2025), and animal models validate 

similar illness parameters across sexes (Brandt et al., 2023). AI implementation in resource-constrained 

environments is made possible by smartphone-based imaging tools like the Smart Eye Camera (Inomata 

et al., 2021), which further increase accessibility. 
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2.2 Advances in Computer Vision and Artificial Intelligence (AI) 

AI applications in ophthalmology have expanded rapidly. Systematic reviews and meta-analyses confirm 

strong diagnostic performance of deep learning for infectious keratitis (Ting et al., 2024), with specific 

applications in automated corneal ulcer detection from slit lamp images (Koyama et al., 2022) and 

smartphone-based validation (Inomata et al., 2021). Vision transformers (Ali et al., 2025), YOLOv5 

attention models (Kitaguchi et al., 2025), and weakly supervised detection (Kniesel et al., 2025) 

demonstrate progress, though often relying on texture rather than clinically meaningful shape descriptors. 

Feature extraction studies (Alqudah et al., 2023) and eye detection using colour and shape features (Al-

Rawi et al., 2012) emphasize the relevance of both handcrafted and learned features. Broader surveys of 

deep learning in medical image analysis (Litjens et al., 2017) and guides to healthcare AI (Topol, 2019) 

contextualize ophthalmic AI within global medicine. 

 

2.3 Deep Learning Frameworks 

Ensemble deep learning on multimodal ophthalmic images (Chen et al., 2025) and multi expert 

frameworks for infectious keratitis (Fenfen et al., 2025) improve accuracy, while CNN comparisons 

(ImageNet vs. AlexNet) (Reddy et al., 2025) and corneal photograph classification (Matos et al., 2024) 

demonstrate feasibility but struggle with variability. Reviews of corneal disease detection systems 

highlight difficulties in making them widely applicable and interpreting the results accurately (Kuo et al., 

2020). Established research into retinal disease diagnosis has directed to the progress of clinically 

applicable deep learning pipelines (De Fauw et al., 2018). This is consistent with broader visions of "high 

performance medicine" that combine human and AI expertise (Topol, 2019), and highlights the need for 

transparency and trust. 

 

2.4 Insights into Biological and Pharmacological Processes 

Besides imaging, hybrid Neural Networks have been used to model herpes dynamics (Madani et al., 2025), 

providing insight into temporal recurrence patterns. Studies, like the pharmacological effects of 6 

thioguanine on HSV-1 ocular infection (Chen et al., 2021), and neurological investigations of HSV-1 in 

the brain (Kuo et al., 2020), demonstrate the systemic intricacies of herpes infections. Biological 

viewpoints complement AI strategies by highlighting the necessity for comprehensive diagnostic 

frameworks that incorporate biological understanding with image examination. 

 

2.5 Shape-based approaches to interpretability 

Although many AI models have extreme accuracy, they frequently lack interpretability that is clinically 

aligned. Systematic reviews highlight the importance of being able to explain their results (Assaf et al., 

2025), and techniques like Grad CAM++ (Kitaguchi et al., 2025) are partial answers to this requirement. 

The morphology of lesions - dendritic branching, terminal bulbs, geographic ulcer contours, and stromal 

haze - remains underutilized. Shape-based descriptors provide a link between traditional ophthalmic 

standards and contemporary AI systems, synchronizing model findings with clinical decision-making 

processes. The historical reliance on morphological features supports their integration into modern 

ensemble ML frameworks (Zhu et al., 2014).  
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2.6 Contributions: Diagnosing Eye Herpes (NAGIN)     

When taken as a whole, these studies demonstrate the gap between high-performance AI and clinically 

meaningful interpretability. Ensemble ML approaches that combine shape-based features with simulated 

ophthalmic images can address data scarcity, class imbalance, and trust deficits. The proposed NAGIN 

framework emphasizes morphological lesion descriptors, combining interpretable base learners with 

robust ensemble methods, validated through simulation and counterfactual testing. By bridging accuracy, 

transparency, and clinical relevance, NAGIN provides a novel method for the classification of ocular 

herpes while maintaining technical rigor and ophthalmic practice. 

 

3 Methods and Materials 

3.1 Dataset    

To support the development and evaluation of automated diagnostic models, we constructed a synthetic 

ophthalmic dataset designed to emulate anterior eye images associated with herpes keratitis (eye herpes). 

The database was intentionally balanced to reflect clinically relevant diversity, comprising 712 simulated 

samples in total. Of these, 350 represented herpes-positive lesions, modelled with dendritic or amoeboid 

morphologies typical of viral infection, while 362 corresponded to non-herpes lesions, mimicking 

bacterial, fungal, or trauma-related presentations. 

In order to capture the unpredictability of real-world data, 10 outlier cases (5 herpes and 5 non-herpes) 

were deliberately introduced across training and testing partitions. Each image was processed to obtain a 

segmented lesion contour, from which a set of five morphological descriptors was extracted: fractal 

dimension, solidity, eccentricity, branching index, and terminal bulb ratio. These features were selected 

for their ability to quantify lesion complexity, shape regularity, and branching behavior - attributes that 

are clinically meaningful in differentiating herpes keratitis from other etiologies. 

The dataset was encoded in a standardized numeric format, ensuring reproducibility and compatibility 

with ML pipelines. Binary class labels were assigned to each sample, with herpes = 1 and non-herpes = 0, 

enabling straightforward supervised learning and evaluation. 

 

Table 1. Summary of Simulated Ophthalmic Dataset for Eye Herpes (NAGIN) Classification. 

 

Category Description Count 

Total Samples Simulated anterior eye images 712 

Herpes Lesions Dendritic or amoeboid morphology 350 

Non-Herpes Lesions 
Bacterial, fungal, or traumatic ulcer 

morphologies 
362 

Injected Outliers Random noise added to mimic real-world 

variability 

10 

Shape Features Extracted 
Fractal Dimension, Solidity, Eccentricity, 

Branching Index, Terminal Bulb Ratio 
5 

Feature Format Standardized numeric descriptors per lesion 5 × 722 

Class Labels Binary: Herpes (1), Non-Herpes (0) 2 

 

Table 1, above shows the summary of Simulated Ophthalmic Dataset for Eye Herpes (NAGIN) 

Classification. 
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Dataset Validation 

The dataset was validated by checking class balance between herpes-positive and non-herpes samples and 

inspecting outliers to ensure controlled variability. Morphological features were standardized to a 

consistent numeric scale, and correlations were analysed to confirm complementary rather than redundant 

information. Finally, reproducibility was verified by regenerating subsets under identical simulation 

parameters, ensuring stable outputs for ML experimentation. 

 

3.2 Feature Engineering 

From each lesion boundary, four biologically interpretable shape descriptors were extracted: 

1.Fractal Dimension (FD): Quantifies boundary complexity; higher FD indicates dendritic or amoeboid 

HSV morphology, its mathematical equation is as follows: 

𝐹𝐷 =  𝑙𝑖𝑚 (𝜀 →  0) [  𝑙𝑜𝑔(𝑁(𝜀)) / 𝑙𝑜𝑔 (
1

𝜀
)] … (1) 

 

2.Solidity (S): Ratio of lesion area to convex hull area; lower values reflect fragmented or irregular 

boundaries; its mathematical equation is as follows: 

𝑆 =  𝐴𝑙𝑒𝑠𝑖𝑜𝑛 / 𝐴𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙  … (2) 

 

3.Eccentricity (E): Measures elongation (0 = circle, 1 = line); HSV ulcers often show moderate to high 

eccentricity, its mathematical equation is as follows: 

𝐸 =  𝑠𝑞𝑟𝑡(1 − (𝑏2 / 𝑎2)) … (3) 

 

4.Branching Index (BI): Quantifies dendritic spread; elevated values are characteristic of HSV 

morphology, its mathematical equation is as follows: 

𝐵𝐼 =  𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 / 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜𝑑𝑒𝑠 … (4) 

 

5.Terminal Bulb Ratio (TBR): Quantifies the relative abundance of terminal bulbs at the ends of 

dendritic branches; elevated values are indicative of herpes keratitis morphology. Its mathematical 

equation is as follows: 

𝑇𝐵𝑅 =  
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝐵𝑢𝑙𝑏𝑠

𝑇𝑜𝑡𝑎𝑙 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠
  … (5)  

 

Raw feature values were standardized using z score normalization, its mathematical equation is as 

follows: 

𝑧𝑖  =  (𝑥𝑖 −  𝜇) / 𝜎 … (6) 

 

where xi is the raw feature value, μ is the mean, and σ is the standard deviation. This ensured comparability 

across classifiers.  

We built a feature matrix of 5 × 712 samples, each paired with a simple binary label (Herpes = 1, 

Non‑Herpes = 0). Herpes lesions stood out with higher fractal dimension, lower solidity, greater 

elongation, more branching, and clear terminal bulbs. In contrast, non‑herpes ulcers appeared more 

compact, less branched, and lacked these distinctive bulbs. Using these standardized descriptors, ensemble 

ML models were able to reliably separate herpes morphology from other ulcer types. 

Following Table 2, shows the morphological Feature Descriptions for Simulated Ophthalmic Dataset. 
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Table 2. Morphological Feature Descriptions for Simulated Ophthalmic Dataset. 

 

Feature Description Range / Scale 
Biological Relevance 

in Herpes 

Fractal 

Dimension 

Lesion complexity 

via fractal geometry 

HSK: 1.20–1.55,  

Non HSK: 1.00–1.30 

Higher in HSK 

dendritic lesions 

Solidity 
Compactness (area 

vs. convex hull) 

HSK: 0.35–0.70, 

Non HSK: 0.60–0.95 

Lower in HSK,  

higher in non HSK 

Eccentricity Elongation measure 
HSK: 0.65–0.95, 

Non HSK: 0.20–0.80 

Elevated in HSK 

dendrites 

Branching 

Index 

Branch point count 

per skeleton 

HSK: 15–45,  

Non HSK: 5–20 
More branches in HSK 

Terminal 

Bulb Ratio 

Bulbs per branch 

fraction 

HSK: 0.20–0.50,  

Non HSK: 0.00–0.25 

Distinct bulbs in HSK, 

rare in non HSK 

 

3.3 Machine Learning Models 

To evaluate the diagnostic strength of the shape‑based descriptors, we applied six classical ML algorithms. 

Logistic regression was used as a transparent baseline model, while the support vector machine with an 

RBF kernel provided robust handling of nonlinear decision boundaries. Random Forest helped manage 

feature variability and reduce overfitting, and Gradient Boosting offered iterative refinement through 

sequential learning. XGBoost was employed for its efficiency and ability to capture subtle feature 

interactions, whereas K‑Nearest Neighbors classified lesions based on local similarity patterns. Each 

model was trained using stratified train–test splits to maintain class balance, and hyperparameters were 

optimized through grid search combined with cross‑validation to ensure fair and reproducible 

comparisons. 

Figure 3. Radar chart ML model performance for Eye Herpes (NAGIN) classification. 
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Above Figure 3, shows the Radar chart ML model performance for NAGIN classification. 

 

3.4 Evaluation Metrics 

Evaluation metrics applied in this study. Accuracy, Precision, Recall, F1‑score, and the Area Under the 

ROC Curve (AUC) are presented with their mathematical definitions and brief descriptions. Together, 

these measures provide complementary perspectives on model performance, capturing overall correctness, 

sensitivity to positive cases, balance between Precision and Recall, and robustness across varying decision 

thresholds as illustrated in following Table 3. 

 

Table 3. Classification metrics with their formulas and explanations used for model evaluation. 

 

Metric Formula Explanation 

 

Accuracy 

(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 

 

Proportion of correctly classified 

samples among all cases. 

 

Precision 

𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
 

 

Fraction of positive predictions 

that are truly positive.  

 

Recall 

𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
 

 

Fraction of actual positives that are 

correctly identified. 

 

F1 Score 

2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

Harmonic mean of Precision and 

Recall, balancing both measures. 

 

AUC 

∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
1

0

 

 

Overall measure of classifier 

performance across all decision 

thresholds. 

 

Figure 4. Model Performance across Metrics for Eye Herpes (NAGIN) Classification. 
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Above Figure 4, shows the Model Performance across Metrics for Eye Herpes (NAGIN) Classification. 

 

3.5 Materials 

To ensure transparency and reproducibility, all analyses in this work were carried out using conventional 

computational resources and open-source software. Python 3.10 running in a Jupyter Notebook served as 

the foundation for the programming environment. XGBoost v1.7 for gradient boosting, NumPy v1.25 and 

Pandas v2.0 for data preparation and administration, Matplotlib v3.7 and Seaborn v0.12 for visualization, 

and scikit-learn v1.3 for model training and evaluation were among the essential libraries. An Intel Core 

i7 processor with 16 GB of RAM running Windows 11 without the need for GPU acceleration made up 

the computing infrastructure. All scripts and visualizations were methodically documented, and simulated 

datasets and experimental results were saved in CSV and PNG formats. The study design allows for 

replication by other researchers without requiring specialist infrastructure by using only open-source 

software and readily accessible hardware. 

 

4 Results 

4.1 Model Performance 

All six ML classifiers were trained and evaluated on the simulated ophthalmic dataset. Ensemble models 

outperformed simpler classifiers across all metrics. 

Table 4. Classifier comparison on simulated ophthalmic data, with ensemble methods outperforming 

simpler models. 

 

Model Accuracy 
Recall 

(Sensitivity) 

F1-

Score 
AUC 

Logistic 

Regression 
0.986207 0.971831 0.985714 0.999619 

SVM (RBF 

Kernel) 
0.986207 0.971831 0.985714 0.99981 
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Random Forest 1 1 1 1 

Gradient 

Boosting 
1 1 1 1 

XGBoost 1 1 1 1 

kNN 0.965517 0.929577 0.963504 0.983061 

 

Table 4, shows the Classifier comparison on simulated ophthalmic data, with ensemble methods 

outperforming simpler models. 

 

Figure 5. Model Performance across Metrics Heatmap for Eye Herpes (NAGIN) Classification. 

 
Above Figure 5, shows the Model Performance across Metrics Heatmap for Eye Herpes (NAGIN) 

Classification, that helps to understand model performance. 

4.2 Model Benchmarking and Performance Metrics 

 Six ML models - XGBoost, Random Forest, SVM (RBF kernel), Logistic Regression, Gradient Boosting 

and K‑Nearest Neighbours - were benchmarked using Accuracy, F1 Score, and AUC. 

Figure 6. Performance comparison of six classifiers for eye herpes classification, with ensembles 

outperforming across all metrics. 
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Figure 6, shows above the Performance comparison of six classifiers for eye herpes classification, with 

ensembles outperforming across all metrics. 

 

4.3 Feature Importance 

Ensemble models (RF, GB, XGBoost) outperformed simpler classifiers, confirming H1. 

Histograms and boxplots showed herpes lesions with higher fractal dimension, branching index, and 

terminal bulb ratio, supporting H2. 

Solidity and eccentricity offered complementary diagnostic value, validating H3. 

Outliers reduced Logistic Regression and KNN performance, while ensembles remained robust, 

confirming H4. 

Correlation analysis revealed meaningful links: fractal dimension–branching index (positive) and solidity–

eccentricity (negative), substantiating H5. 

 

Figure 7. Fractal dimension and solidity distribution across lesion types. 

 

 
As illustrated in Figure 7, herpes‑like ulcers exhibited slightly lower median solidity and greater variability 

compared to non‑herpes lesions, reinforcing its role as a morphological discriminator. 

 

Figure 8. the Branching index distribution across lesion types, with non-herpes showing higher values, 

Eccentricity higher count help to diagnose lesion. 

 

 
 

Figure 8 shows the Branching index distribution across lesion types, with herpes-like ulcers exhibiting 

higher, whereas eccentricity distribution also helps to identify herpes. 
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Figure 9. shows the Terminal bulb ratio distribution and Boxplot of Terminal bulb ratio across lesion 

types, with herpes‑like ulcers showing higher values. 

 

 
 

As illustrated in Figure 9, the Terminal bulb ratio distribution and Boxplot of Terminal bulb ratio across 

lesion types, with herpes‑like ulcers showing higher values. 

 

4.4 Feature Correlation Analysis 

Pearson correlation analysis, Figure 8, was performed on five morphological descriptors: fractal_dim, 

solidity, eccentricity, branching_index, and terminal_bulb_ratio. Significant associations (p < 0.05) were 

observed: terminal_bulb_ratio correlated positively with eccentricity (r = 0.43, p < 0.01) and 

branching_index (r = 0.36, p < 0.05), while solidity correlated negatively with eccentricity (r = –0.27, p < 

0.05) and terminal_bulb_ratio (r = –0.34, p < 0.05). A mild positive correlation was also found between 

eccentricity and branching_index (r = 0.30, p < 0.05). In contrast, fractal_dim showed weak, 

non‑significant correlations with all other features (r < 0.20). Overall, these results highlight biologically 

meaningful feature interactions while confirming independence among others, supporting robust feature 

selection for downstream modelling. 

 

Figure 10. Correlation heatmap of shape-based morphological features extracted from lesion curves. 
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Above Figure 10, shows the Correlation heatmap of shape-based morphological features extracted from 

lesion curves. 

 

Table 5. Statistically significant Pearson correlations among morphological features. 

 

Feature Pair r-value p-value Significance 

Solidity – Eccentricity - 0.27 < 0.05 Significant 

Solidity – Terminal_bulb_ratio  - 0.34 < 0.05 Significant 

Eccentricity – Branching_index 0.30 < 0.05 Significant 

Eccentricity – Terminal_bulb_ratio 0.43 < 0.01 Highly significant 

Branching_index – 

Terminal_bulb_ratio 
0.36 < 0.05 Significant 

 

Table 5, shows Statistically significant Pearson correlations among morphological features. 

Where Only correlations with p < 0.05 are reported. 

 

The correlation study revealed meaningful relationships among the morphological features, as present in 

Table 5. Specifically, terminal_bulb_ratio showed positive associations with both eccentricity and 

branching_index, indicating that elongated and branched structures tend to exhibit higher bulb ratios. In 

contrast, solidity was negatively linked to eccentricity and terminal_bulb_ratio, suggesting that less 

compact morphologies are more likely to be elongated and bulbous. These results emphasize biologically 

relevant feature interactions that can support effective feature selection and help minimize redundancy in 

subsequent modelling tasks. 

 

4.5 Impact 

Our work contributes to the growing field of explainable Artificial Intelligence (XAI) in ophthalmology 

by demonstrating that biologically interpretable shape-based features can effectively classify herpes 

simplex virus (HSV) corneal ulcers. The proposed framework offers several impactful benefits: 

 Clinical Decision Support: By quantifying lesion morphology, the system reduces diagnostic 

subjectivity and supports timely antiviral intervention, particularly in resource-limited settings. 

 Explainability and Trust: Unlike deep learning “black-box” models, the use of fractal dimension, 

solidity, eccentricity, and branching index enables transparent reasoning aligned with clinical 

observations. 

 Scalability and Reproducibility: The methodology is lightweight, reproducible, and adaptable to 

real-world datasets, facilitating integration into slit-lamp imaging workflows and mobile 

diagnostic platforms. 

 Educational Utility: The framework can assist in training ophthalmology residents and students 

to recognize morphological patterns associated with HSV ulcers. 

 Foundation for Future Research: This work lays the groundwork for mixture models that 

combine explainable features with deep learning embeddings, advancing precision diagnostics in 

corneal pathology. 
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5 Conclusion and Future Research Direction 

This study demonstrates that shape‑based feature engineering, combined with supervised ML, provides a 

reproducible and explainable framework for the classification of herpes simplex virus (HSV) corneal 

ulcers. Using a simulated dataset of 722 anterior eye images, five morphological descriptors—fractal 

dimension, solidity, eccentricity, branching index, and terminal bulb ratio—were extracted and evaluated 

across six classifiers. 

Performance analysis proved the dominance of the ensemble techniques: the models Random Forest, 

Gradient Boosting, and XGBoost demonstrated excellent diagnostic results (Accuracy, Recall, F1-score, 

and AUC = 1.00). Logistic Regression and Support Vector Machine demonstrated high quality (Accuracy 

= 0.986, Recall = 0.972, F1-score = 0.986, AUC is 0.9997), and slightly worse but still high performance 

demonstrated k-Nearest Neighbours (Accuracy = 0.966, Recall = 0.930, F1-score = 0.964, AUC.  

Feature importance analysis identified fractal dimension, branching index, and terminal bulb ratio as 

dominant predictors, while correlation analysis reinforced biological plausibility by linking dendritic 

branching with fractal complexity and elongated morphology with reduced solidity. These findings 

highlight that engineered shape descriptors not only drive high diagnostic accuracy but also align with 

clinically interpretable morphological patterns, strengthening the case for explainable AI in 

ophthalmology. 

Although the reliance on simulated data limits immediate clinical application, the framework establishes 

a transparent and scalable methodology that can be extended to real patient datasets. Future research will 

focus on clinical validation, expansion of the feature set to include additional morphological and textural 

cues, and hybrid approaches that integrate interpretable descriptors with deep learning embeddings. Such 

efforts will enhance generalizability, reduce diagnostic variability, and facilitate the integration of 

AI‑driven tools into routine ophthalmic practice, particularly in resource‑constrained settings. 

 

Key Contributions 

The following contributions are presented in this study to the field of eye diagnostics and explainable 

artificial intelligence: 

 Novel Dataset Simulation: Established a reproducible modelled dataset in ophthalmology 

concerning herpes-like and non-herpes cases of corneal ulcers, with outliers mimicked to 

demonstrate genuine variability. 

 Clinically Relevant Feature Engineering: Identified five interpretable shape-based features 

(fractal dimension, solidity, eccentricity, branching index, and terminal bulb ratio), which are in 

accordance with morphological aspects of HSV ulcers. 

 Comprehensive Model Benchmarking: Six supervised learning classifiers (Random Forest, 

Gradient Boosting, XGBoost, Logistic Regression, SVM, and kNN) are compared; results clearly 

demonstrate the superiority of ensemble models over simpler models on Accuracy, Recall, F1-

Score, and AUC measures. 

 Explainability and Robustness: Validation of the importance of features and correlation trends, 

which identify biologically relevant patterns, proving the model’s robustness even when dealing 

with noisy data. 

 Practical Use in Clinical and Educational Settings: Has developed a clear AI framework, 

adaptable to actual patient data, and highly useful for the benefit of patients and also for educational 

purposes for medical interns. 
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Future Work 

Based on the outcomes of this study, the following are proposed to be done to increase their clinical 

relevance and accuracy: 

 Clinical Validation: Validate the model using real-world slit lamp images of HSV and non-HSV 

ulcers to test its accuracy in the real world. 

 Sample Diversity: Increase the diversity of the sample to include people of different ages, severity 

levels, imaging conditions, and other types of ulcers such as fungal, Traumatic, and Neuropathic. 

 Hybrid Modelling: It involves blending the embeddings obtained using deep learning (CNN 

lesion representation) with shape descriptors. 

 Temporal Analysis: Use longitudinal data to analyze morphologic evolution and monitor the 

progress of the ulcer and the effects of treatment. 

 Mobile Deployment: Create simplified mobile applications for point-of-care screening of patients 

having genital/herpes simplex Virus infection. 

 Educational Integration: Create engaging learning modules for medical students and trainees 

using feature visualization and classification result outputs to integrate into ophthalmology 

education. 
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