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Abstract

Accurate classification of ophthalmic lesions depends on robust feature engineering and transparent
machine learning (ML) pipelines. We propose an ensemble ML-based framework for diagnosing eye
herpes (NAGIN) using a simulated dataset of 712 anterior eye images (350 herpes-like, 362 non-herpes).
Five features - fractal dimension, solidity, eccentricity, branching index, and terminal bulb ratio, were
extracted from segmented contours and used for supervised learning. Six ML classifiers were evaluated:
logistic regression, support vector machine (RBF kernel), random forest, gradient boosting, XGBoost, and
k-nearest neighbours. Performance was assessed using accuracy, precision, recall, Fl1-score, and AUC.
Ensemble methods delivered perfect diagnostic outcomes, with Random Forest, Gradient Boosting, and
XGBoost achieving 100% accuracy, Fl-score, and AUC. Logistic regression and SVM gave excellent
results, with accuracy around 98.6% and an AUC close to 1. In comparison, KNN did a bit worse, reaching
about 96.5% accuracy and an AUC of 0.983. Feature importance analysis identified fractal dimension,
branching index, and terminal bulb ratio as dominant predictors, while correlation analysis reinforced
biological plausibility by linking dendritic branching with fractal complexity and elongated morphology
with reduced solidity. These results highlight the value of engineered shape features combined with
ensemble ML strategies for reliable ophthalmic diagnosis and provide a scalable foundation for
Explainable Artificial Intelligence (EAI) in Medical Image Analysis (MIA).
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1. Introduction

1.1 Problem Formulation

One of the main reasons for infectious corneal blindness in the world is herpes simplex virus (HSV)
keratitis. Clinically, HSV ulcers frequently manifest as irregularly shaped dendritic or amoeboid lesions
that resemble bacterial, fungal, or traumatic corneal ulcers. Precise diagnosis is essential because incorrect
diagnosis can result in inappropriate treatment, such as corticosteroid use in non-herpes ulcers or delayed
antiviral therapy in HSV cases; this may result in permanent eyesight cost (Labib et al., 2022).
Conventional diagnostic methods rely on clinician expertise and slit-lamp examination, both of which are
subjective and variable by nature. In settings with limited resources, laboratory confirmation techniques
like PCR or viral culture are not frequently available, which makes prompt diagnosis even more difficult.
These difficulties demonstrate the requirement for computational methods that offer objective, repeatable,
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and comprehensible assistance in distinguishing HSV ulcers from other corneal diseases. Our study
addresses this scope of work by constructing a simulated ophthalmic database of eye herpes, extracting
interpretable shape descriptors, and benchmarking multiple supervised classifiers. By integrating feature
engineering with ensemble learning approaches, the framework demonstrates how transparent and
reproducible machine learning pipelines can be applied to domain-specific datasets. Beyond the medical
application, the work contributes to the broader field of information systems by illustrating the
methodological value of feature engineering and ensemble learning in designing explainable
computational models. Conventional diagnostic methods rely on clinician expertise and slit-lamp
examination, both of which are subjective and variable by nature. In settings with limited resources,
laboratory confirmation techniques like PCR or viral culture are not frequently available, which makes
prompt diagnosis even more difficult. These difficulties demonstrate the requirement for computational
methods that offer objective, repeatable, and comprehensible assistance in distinguishing HSV ulcers from
other corneal diseases. Our study addresses this scope of work by constructing a simulated ophthalmic
database of eye herpes, extracting interpretable shape descriptors, and benchmarking multiple supervised
classifiers. By integrating feature engineering with ensemble learning approaches, the framework
demonstrates how transparent and reproducible machine learning pipelines can be applied to
domain-specific datasets. Beyond the medical application, the work contributes to the broader field of
information systems by illustrating the methodological value of feature engineering and ensemble learning
in designing explainable computational models.

1.2 Proposed Solution

Figure 1, illustrates the workflow for shape-based feature engineering, starting with simulated ophthalmic
images, progressing through shape extraction and feature selection, and concluding with ensemble
machine learning classification to predict Eye Herpes (NAGIN).

Figure 1. Workflow of shape-based feature engineering using ensemble machine learning on simulated
ophthalmic Eye Herpes (NAGIN) diagnosis.
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1.3 Research Objectives

The primary objective of our work is to design and evaluate an Ensemble Machine Learning (EML)
framework for NAGIN / Ocular Herpes (HSV) diagnosis by applying shape-based feature engineering to
a simulated ophthalmic database. Specifically, the research aims to construct a dataset of anterior eye
images representing herpes-like and non-herpes corneal ulcers, with outlier injection to mimic real-world
variability; to extract biologically meaningful morphological descriptors such as fractal dimension,
solidity, eccentricity, and branching index from segmented lesion contours; and to benchmark multiple
supervised classification models, including Random Forest, SVM, Logistic Regression, XGBoost, and
KNN, using accuracy, F1 score, and AUC as performance metrics. To authenticate the diagnostic
relevance of these descriptors, additionally, research seeks to analyze feature importance and correlations.
This will create a repeatable framework that combines feature engineering and ensemble learning and may
be extended to clinical datasets and ophthalmic diagnostic workflows.

1.4 Clinical Background

Ocular herpes (NAGIN), a herpes simplex virus infection (usually HSV-1), causes herpes simplex keratitis
(HSK), which presents as dendritic corneal ulcers that are structurally complex, branching lesions that can
be quantified using descriptors of fractal dimension, branching index, solidity, and eccentricity. By
incorporating these clinically significant characteristics into the methodological framework, the
computational analysis is guaranteed to stay consistent with recognized diagnostic markers of HSV
infection.

1.5 Hypotheses

Based on the scientific framework employed in this investigation and the clinical features of HSV corneal
ulcers, the following hypotheses were formulated:

e Hi: In distinguishing herpes-like from non-herpes lesions, ensemble learning models (Random
Forest, Gradient Boosting, XGBoost) will outperform simpler classifiers (Logistic Regression,
SVM with RBF kernel, and k-Nearest Neighbours) in terms of Accuracy, F1-score, and AUC.

e H2: Fractal dimension, branching index, and terminal bulb ratio will emerge as the most
discriminative features, reflecting dendritic complexity, branching morphology, and localized
swelling patterns typical of HSV ulcers.

e Has: Solidity and eccentricity will provide complementary diagnostic value by differentiating
compact bacterial or fungal ulcers from fragmented and elongated viral lesions.

e Ha: Simpler models (Logistic Regression, KNN) will show reduced robustness when outliers are
introduced into the dataset, whereas ensemble approaches will maintain stability due to their ability
to handle noisy data.

e Hs: Correlation analysis of morphological features will reveal biologically meaningful
associations, including a positive relationship between fractal dimension and branching index, and
a negative correlation between solidity and eccentricity.

Figure 2, shows the Conceptual framework of Hypothesis from H;: to Hs linking features, classifiers,
metrics, and outcomes in Eye Herpes (NAGIN) diagnosis.
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Figure 2. Conceptual framework of Hypothesis from H; to Hs linking features, classifiers, metrics, and
outcomes in Eye Herpes (NAGIN) diagnosis.
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The arrows annotated between the hypothesis in the above figure 2, illustrate the expected relationships
between morphological features, supervised classifiers, performance metrics, and diagnostic outcomes.
The conceptual framework provides a structured map of the study’s predictive assumptions and supports
the integration of explainable-ML into ophthalmic diagnostics.

2. Literature Review

Survey of Existing Work

Herpes simplex keratitis (HSK) / eye herpes (NAGIN) is a leading cause of corneal blindness worldwide,
characterized by recurrent episodes that complicate management and long-term outcomes. Dysfunctional
senescent HSV-specific CD57+CD8+T cells have been linked to symptomatic recurrences in
immunological studies (Chentoufi et al., 2025), and comorbidity analyses demonstrate varied PCR
positivity in keratitis, corneal erosions, and ulcers (Dandachli et al., 2025). A substantial worldwide burden
is estimated by epidemiological reviews (McCormick et al., 2022), and correlations with systemic factors
like COVID-19 immunization have also been documented (Lee et al., 2024). The biology, symptoms, and
treatment of herpetic eye illness were established by classical research (Zhu et al., 2014). Staining,
immunofluorescence, and PCR assays have improved the diagnostic process (Farhatullah, 2003).
Recurrences have been linked to psychological stress (Herpetic, 2000), highlighting the complex nature
of illness progression.

2.1 Data Resources and Simulation

The development of Al now heavily relies on large-scale datasets. Synthetic images have been
demonstrated to improve diagnostic training (Xie et al., 2025), and international corneal and ocular surface
disease databases for EHRs (Ting et al., 2025) and frameworks for balanced corneal image repositories
(Ndebele et al., 2025) offer standardized resources. Bibliometric analyses demonstrate the increasing focus
of research on HSV Kkeratitis and Al-based diagnostics (Song et al., 2025), and animal models validate
similar illness parameters across sexes (Brandt et al., 2023). Al implementation in resource-constrained
environments is made possible by smartphone-based imaging tools like the Smart Eye Camera (Inomata
et al., 2021), which further increase accessibility.
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2.2 Advances in Computer Vision and Artificial Intelligence (Al)

Al applications in ophthalmology have expanded rapidly. Systematic reviews and meta-analyses confirm
strong diagnostic performance of deep learning for infectious keratitis (Ting et al., 2024), with specific
applications in automated corneal ulcer detection from slit lamp images (Koyama et al., 2022) and
smartphone-based validation (Inomata et al., 2021). Vision transformers (Ali et al., 2025), YOLOvV5
attention models (Kitaguchi et al., 2025), and weakly supervised detection (Kniesel et al., 2025)
demonstrate progress, though often relying on texture rather than clinically meaningful shape descriptors.
Feature extraction studies (Alqudah et al., 2023) and eye detection using colour and shape features (Al-
Rawi et al., 2012) emphasize the relevance of both handcrafted and learned features. Broader surveys of
deep learning in medical image analysis (Litjens et al., 2017) and guides to healthcare Al (Topol, 2019)
contextualize ophthalmic Al within global medicine.

2.3 Deep Learning Frameworks

Ensemble deep learning on multimodal ophthalmic images (Chen et al., 2025) and multi expert
frameworks for infectious keratitis (Fenfen et al., 2025) improve accuracy, while CNN comparisons
(ImageNet vs. AlexNet) (Reddy et al., 2025) and corneal photograph classification (Matos et al., 2024)
demonstrate feasibility but struggle with variability. Reviews of corneal disease detection systems
highlight difficulties in making them widely applicable and interpreting the results accurately (Kuo et al.,
2020). Established research into retinal disease diagnosis has directed to the progress of clinically
applicable deep learning pipelines (De Fauw et al., 2018). This is consistent with broader visions of "high
performance medicine” that combine human and Al expertise (Topol, 2019), and highlights the need for
transparency and trust.

2.4 Insights into Biological and Pharmacological Processes

Besides imaging, hybrid Neural Networks have been used to model herpes dynamics (Madani et al., 2025),
providing insight into temporal recurrence patterns. Studies, like the pharmacological effects of 6
thioguanine on HSV-1 ocular infection (Chen et al., 2021), and neurological investigations of HSV-1 in
the brain (Kuo et al., 2020), demonstrate the systemic intricacies of herpes infections. Biological
viewpoints complement Al strategies by highlighting the necessity for comprehensive diagnostic
frameworks that incorporate biological understanding with image examination.

2.5 Shape-based approaches to interpretability

Although many Al models have extreme accuracy, they frequently lack interpretability that is clinically
aligned. Systematic reviews highlight the importance of being able to explain their results (Assaf et al.,
2025), and techniques like Grad CAM++ (Kitaguchi et al., 2025) are partial answers to this requirement.
The morphology of lesions - dendritic branching, terminal bulbs, geographic ulcer contours, and stromal
haze - remains underutilized. Shape-based descriptors provide a link between traditional ophthalmic
standards and contemporary Al systems, synchronizing model findings with clinical decision-making
processes. The historical reliance on morphological features supports their integration into modern
ensemble ML frameworks (Zhu et al., 2014).
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2.6 Contributions: Diagnosing Eye Herpes (NAGIN)

When taken as a whole, these studies demonstrate the gap between high-performance Al and clinically
meaningful interpretability. Ensemble ML approaches that combine shape-based features with simulated
ophthalmic images can address data scarcity, class imbalance, and trust deficits. The proposed NAGIN
framework emphasizes morphological lesion descriptors, combining interpretable base learners with
robust ensemble methods, validated through simulation and counterfactual testing. By bridging accuracy,
transparency, and clinical relevance, NAGIN provides a novel method for the classification of ocular
herpes while maintaining technical rigor and ophthalmic practice.

3 Methods and Materials

3.1 Dataset

To support the development and evaluation of automated diagnostic models, we constructed a synthetic
ophthalmic dataset designed to emulate anterior eye images associated with herpes keratitis (eye herpes).
The database was intentionally balanced to reflect clinically relevant diversity, comprising 712 simulated
samples in total. Of these, 350 represented herpes-positive lesions, modelled with dendritic or amoeboid
morphologies typical of viral infection, while 362 corresponded to non-herpes lesions, mimicking
bacterial, fungal, or trauma-related presentations.

In order to capture the unpredictability of real-world data, 10 outlier cases (5 herpes and 5 non-herpes)
were deliberately introduced across training and testing partitions. Each image was processed to obtain a
segmented lesion contour, from which a set of five morphological descriptors was extracted: fractal
dimension, solidity, eccentricity, branching index, and terminal bulb ratio. These features were selected
for their ability to quantify lesion complexity, shape regularity, and branching behavior - attributes that
are clinically meaningful in differentiating herpes keratitis from other etiologies.

The dataset was encoded in a standardized numeric format, ensuring reproducibility and compatibility
with ML pipelines. Binary class labels were assigned to each sample, with herpes = 1 and non-herpes = 0,
enabling straightforward supervised learning and evaluation.

Table 1. Summary of Simulated Ophthalmic Dataset for Eye Herpes (NAGIN) Classification.

Category Description Count
Total Samples Simulated anterior eye images 712
Herpes Lesions Dendritic or amoeboid morphology 350

Bacterial, fungal, or traumatic ulcer
morphologies

Injected Outliers Random noise added to mimic real-world 10
Fractal Dimension, Solidity, Eccentricity,

Non-Herpes Lesions 362

Shape Features Extracted Branching Index, Terminal Bulb Ratio >
Feature Format Standardized numeric descriptors per lesion 5x 722
Class Labels Binary: Herpes (1), Non-Herpes (0) 2

Table 1, above shows the summary of Simulated Ophthalmic Dataset for Eye Herpes (NAGIN)
Classification.
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Dataset Validation

The dataset was validated by checking class balance between herpes-positive and non-herpes samples and
inspecting outliers to ensure controlled variability. Morphological features were standardized to a
consistent numeric scale, and correlations were analysed to confirm complementary rather than redundant
information. Finally, reproducibility was verified by regenerating subsets under identical simulation
parameters, ensuring stable outputs for ML experimentation.

3.2 Feature Engineering
From each lesion boundary, four biologically interpretable shape descriptors were extracted:
1.Fractal Dimension (FD): Quantifies boundary complexity; higher FD indicates dendritic or amoeboid
HSV morphology, its mathematical equation is as follows:
1

FD = lim (s — 0) [ log(N(¢)) / log (2)] (1)
2.Solidity (S): Ratio of lesion area to convex hull area; lower values reflect fragmented or irregular
boundaries; its mathematical equation is as follows:

S = Alesion /Aconvex hull (2)

3.Eccentricity (E): Measures elongation (0 = circle, 1 = line); HSV ulcers often show moderate to high
eccentricity, its mathematical equation is as follows:
E = sqrt(1 — (b%?/a?)..(3)

4.Branching Index (BI): Quantifies dendritic spread; elevated values are characteristic of HSV
morphology, its mathematical equation is as follows:
Bl = Branches / Total Nodes ... (4)

5. Terminal Bulb Ratio (TBR): Quantifies the relative abundance of terminal bulbs at the ends of
dendritic branches; elevated values are indicative of herpes keratitis morphology. Its mathematical

equation is as follows:
Terminal Bulbs

TBR = ——2 22 (5)
Total Branches
Raw feature values were standardized using z score normalization, its mathematical equation is as

follows:
zi = (x;— @)/ o..(6)

where xi is the raw feature value, p is the mean, and o is the standard deviation. This ensured comparability
across classifiers.

We built a feature matrix of 5 x 712 samples, each paired with a simple binary label (Herpes = 1,
Non-Herpes = 0). Herpes lesions stood out with higher fractal dimension, lower solidity, greater
elongation, more branching, and clear terminal bulbs. In contrast, non-herpes ulcers appeared more
compact, less branched, and lacked these distinctive bulbs. Using these standardized descriptors, ensemble
ML models were able to reliably separate herpes morphology from other ulcer types.

Following Table 2, shows the morphological Feature Descriptions for Simulated Ophthalmic Dataset.
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Table 2. Morphological Feature Descriptions for Simulated Ophthalmic Dataset.

Biological Relevance

in Herpes

Fractal Lesion complexity | HSK: 1.20-1.55, Higher in HSK

Dimension | via fractal geometry | Non HSK: 1.00-1.30 | dendritic lesions

Compactness (area HSK: 0.35-0.70, Lower in HSK,

vs. convex hull) Non HSK: 0.60-0.95 | higher in non HSK
HSK: 0.65-0.95, Elevated in HSK

Non HSK: 0.20-0.80 | dendrites

Branching | Branch point count HSK: 15-45,

Feature Description Range / Scale

Solidity

Eccentricity | Elongation measure

More branches in HSK

Index per skeleton Non HSK: 5-20
Terminal Bulbs per branch HSK: 0.20-0.50, Distinct bulbs in HSK,
Bulb Ratio | fraction Non HSK: 0.00-0.25 | rare in non HSK

3.3 Machine Learning Models

To evaluate the diagnostic strength of the shape-based descriptors, we applied six classical ML algorithms.
Logistic regression was used as a transparent baseline model, while the support vector machine with an
RBF kernel provided robust handling of nonlinear decision boundaries. Random Forest helped manage
feature variability and reduce overfitting, and Gradient Boosting offered iterative refinement through
sequential learning. XGBoost was employed for its efficiency and ability to capture subtle feature
interactions, whereas K-Nearest Neighbors classified lesions based on local similarity patterns. Each
model was trained using stratified train—test splits to maintain class balance, and hyperparameters were
optimized through grid search combined with cross-validation to ensure fair and reproducible
comparisons.

Figure 3. Radar chart ML model performance for Eye Herpes (NAGIN) classification.

Radar Chart: ModePRarfdomance
____ logistic
Regression
SVM
(RBF Kernel)
1.0 Random
Forest
Gradient
Boosting
-cura . xGBoost

—— kNN

Recall (Sensitiyi

F1-Score

AUROC

AIJFR26013060 Volume 7, Issue 1 (January-February 2026) 8


http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

Above Figure 3, shows the Radar chart ML model performance for NAGIN classification.

3.4 Evaluation Metrics

Evaluation metrics applied in this study. Accuracy, Precision, Recall, F1-score, and the Area Under the
ROC Curve (AUC) are presented with their mathematical definitions and brief descriptions. Together,
these measures provide complementary perspectives on model performance, capturing overall correctness,
sensitivity to positive cases, balance between Precision and Recall, and robustness across varying decision
thresholds as illustrated in following Table 3.

Table 3. Classification metrics with their formulas and explanations used for model evaluation.

Metric Formula Explanation
TP + TN . .
( ) Proportion of correctly classified
Accurac (TP + TN + FP + FN)
y samples among all cases.
TP . . .
TP + FP) Fraction of positive predictions
Precision that are truly positive.
r Fracti f actual itives that
—_—— raction of actual positives that are
Recall (TP + FN) correctly identified.
Precision * Recall . ..
* ((P ~on T R ll)) Harmonic mean of Precision and
F1 Score recision eca Recall, balancing both measures.
f 1TPR (FPR)FPR Overall measure of classifier
AUC 0 performance across all decision
thresholds.

Figure 4. Model Performance across Metrics for Eye Herpes (NAGIN) Classification.
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Line Plot: Model Performance Across Metrics
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Above Figure 4, shows the Model Performance across Metrics for Eye Herpes (NAGIN) Classification.

3.5 Materials

To ensure transparency and reproducibility, all analyses in this work were carried out using conventional
computational resources and open-source software. Python 3.10 running in a Jupyter Notebook served as
the foundation for the programming environment. XGBoost v1.7 for gradient boosting, NumPy v1.25 and
Pandas v2.0 for data preparation and administration, Matplotlib v3.7 and Seaborn v0.12 for visualization,
and scikit-learn v1.3 for model training and evaluation were among the essential libraries. An Intel Core
i7 processor with 16 GB of RAM running Windows 11 without the need for GPU acceleration made up
the computing infrastructure. All scripts and visualizations were methodically documented, and simulated
datasets and experimental results were saved in CSV and PNG formats. The study design allows for
replication by other researchers without requiring specialist infrastructure by using only open-source
software and readily accessible hardware.

4 Results

4.1 Model Performance

All six ML classifiers were trained and evaluated on the simulated ophthalmic dataset. Ensemble models
outperformed simpler classifiers across all metrics.

Table 4. Classifier comparison on simulated ophthalmic data, with ensemble methods outperforming
simpler models.

Recall F1-
Model Accuracy (Sensitivity) | Score AUC
Logistic 0.986207 | 0.971831 |0.985714 | 0.999619
Regression
SVMRBF | 4 986007 | 0.971831 | 0.985714 | 0.99981
Kernel)
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Random Forest 1 1 1 1
Gradl_ent 1 1 1 1
Boosting
XGBoost 1 1 1 1

kNN 0.965517 0.929577 | 0.963504 | 0.983061

Table 4, shows the Classifier comparison on simulated ophthalmic data, with ensemble methods
outperforming simpler models.

Figure 5. Model Performance across Metrics Heatmap for Eye Herpes (NAGIN) Classification.
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Above Figure 5, shows the Model Performance across Metrics Heatmap for Eye Herpes (NAGIN)
Classification, that helps to understand model performance.

4.2 Model Benchmarking and Performance Metrics
Six ML models - XGBoost, Random Forest, SVM (RBF kernel), Logistic Regression, Gradient Boosting
and K-Nearest Neighbours - were benchmarked using Accuracy, F1 Score, and AUC.

Figure 6. Performance comparison of six classifiers for eye herpes classification, with ensembles
outperforming across all metrics.

Model Performance Comparison
1.025

Metric
1.000

mmm Accuracy
0.975 mmm Precision
Recall
0.950 == (Sensitivity)
mmm F1-Score
0.925 mmm AUROC
0.900
0.875
0.850

Logistic SVM Random Gradient XGBoost
RegressionRBF Kernel) Forest Boosting

Model

Score

AIJFR26013060 Volume 7, Issue 1 (January-February 2026) 11


http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

Figure 6, shows above the Performance comparison of six classifiers for eye herpes classification, with
ensembles outperforming across all metrics.

4.3 Feature Importance

Ensemble models (RF, GB, XGBoost) outperformed simpler classifiers, confirming Hz.

Histograms and boxplots showed herpes lesions with higher fractal dimension, branching index, and
terminal bulb ratio, supporting Ha.

Solidity and eccentricity offered complementary diagnostic value, validating Ha.

Outliers reduced Logistic Regression and KNN performance, while ensembles remained robust,
confirming Ha.

Correlation analysis revealed meaningful links: fractal dimension—branching index (positive) and solidity—
eccentricity (negative), substantiating Hs.

Figure 7. Fractal dimension and solidity distribution across lesion types.

Distribution of fractal_dim by class (Herpes=1, Non-Herpes=0)  pjstribution of solidity by class (Herpes=1, Non-Herpes=0)
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As illustrated in Figure 7, herpes-like ulcers exhibited slightly lower median solidity and greater variability
compared to non-herpes lesions, reinforcing its role as a morphological discriminator.

Figure 8. the Branching index distribution across lesion types, with non-herpes showing higher values,
Eccentricity higher count help to diagnose lesion.
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Figure 8 shows the Branching index distribution across lesion types, with herpes-like ulcers exhibiting
higher, whereas eccentricity distribution also helps to identify herpes.
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Figure 9. shows the Terminal bulb ratio distribution and Boxplot of Terminal bulb ratio across lesion
types, with herpes-like ulcers showing higher values.

Distribution of terminal_bulb ratio by class (Herpes=1, Non-Herpes=0) Boxplot of terminal_bulb_ratio by class
rf] label 8
S © 04
30 =0 E o]
» 2'03
5 20 3,
8 T 0.2
=
£
X 301
0 o> ol e
0.1 0.2 0.3 04 Non-Herpes Herpes
terminal_bulb_ratio label

As illustrated in Figure 9, the Terminal bulb ratio distribution and Boxplot of Terminal bulb ratio across
lesion types, with herpes-like ulcers showing higher values.

4.4 Feature Correlation Analysis

Pearson correlation analysis, Figure 8, was performed on five morphological descriptors: fractal_dim,
solidity, eccentricity, branching_index, and terminal_bulb_ratio. Significant associations (p < 0.05) were
observed: terminal_bulb_ratio correlated positively with eccentricity (r = 0.43, p < 0.01) and
branching_index (r = 0.36, p < 0.05), while solidity correlated negatively with eccentricity (r =-0.27, p <
0.05) and terminal_bulb_ratio (r = —0.34, p < 0.05). A mild positive correlation was also found between
eccentricity and branching_index (r = 0.30, p < 0.05). In contrast, fractal dim showed weak,
non-significant correlations with all other features (r < 0.20). Overall, these results highlight biologically
meaningful feature interactions while confirming independence among others, supporting robust feature
selection for downstream modelling.

Figure 10. Correlation heatmap of shape-based morphological features extracted from lesion curves.
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Above Figure 10, shows the Correlation heatmap of shape-based morphological features extracted from
lesion curves.

Table 5. Statistically significant Pearson correlations among morphological features.

Feature Pair r-value | p-value Significance
Solidity — Eccentricity -0.27 <0.05 Significant
Solidity — Terminal_bulb_ratio -0.34 <0.05 Significant
Eccentricity — Branching_index 0.30 <0.05 Significant

Eccentricity — Terminal_bulb_ratio 0.43 <0.01 Highly significant

Branching_index -
Terminal_bulb_ratio

0.36 <0.05 Significant

Table 5, shows Statistically significant Pearson correlations among morphological features.
Where Only correlations with p < 0.05 are reported.

The correlation study revealed meaningful relationships among the morphological features, as present in
Table 5. Specifically, terminal_bulb_ratio showed positive associations with both eccentricity and
branching_index, indicating that elongated and branched structures tend to exhibit higher bulb ratios. In
contrast, solidity was negatively linked to eccentricity and terminal_bulb_ratio, suggesting that less
compact morphologies are more likely to be elongated and bulbous. These results emphasize biologically
relevant feature interactions that can support effective feature selection and help minimize redundancy in
subsequent modelling tasks.

4.5 Impact

Our work contributes to the growing field of explainable Artificial Intelligence (XAIl) in ophthalmology
by demonstrating that biologically interpretable shape-based features can effectively classify herpes
simplex virus (HSV) corneal ulcers. The proposed framework offers several impactful benefits:

e Clinical Decision Support: By quantifying lesion morphology, the system reduces diagnostic
subjectivity and supports timely antiviral intervention, particularly in resource-limited settings.

e Explainability and Trust: Unlike deep learning “black-box” models, the use of fractal dimension,
solidity, eccentricity, and branching index enables transparent reasoning aligned with clinical
observations.

e Scalability and Reproducibility: The methodology is lightweight, reproducible, and adaptable to
real-world datasets, facilitating integration into slit-lamp imaging workflows and mobile
diagnostic platforms.

e Educational Utility: The framework can assist in training ophthalmology residents and students
to recognize morphological patterns associated with HSV ulcers.

e Foundation for Future Research: This work lays the groundwork for mixture models that
combine explainable features with deep learning embeddings, advancing precision diagnostics in
corneal pathology.
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5 Conclusion and Future Research Direction

This study demonstrates that shape-based feature engineering, combined with supervised ML, provides a
reproducible and explainable framework for the classification of herpes simplex virus (HSV) corneal
ulcers. Using a simulated dataset of 722 anterior eye images, five morphological descriptors—fractal
dimension, solidity, eccentricity, branching index, and terminal bulb ratio—were extracted and evaluated
across six classifiers.

Performance analysis proved the dominance of the ensemble techniques: the models Random Forest,
Gradient Boosting, and XGBoost demonstrated excellent diagnostic results (Accuracy, Recall, F1-score,
and AUC = 1.00). Logistic Regression and Support Vector Machine demonstrated high quality (Accuracy
=0.986, Recall =0.972, F1-score = 0.986, AUC is 0.9997), and slightly worse but still high performance
demonstrated k-Nearest Neighbours (Accuracy = 0.966, Recall = 0.930, F1-score = 0.964, AUC.

Feature importance analysis identified fractal dimension, branching index, and terminal bulb ratio as
dominant predictors, while correlation analysis reinforced biological plausibility by linking dendritic
branching with fractal complexity and elongated morphology with reduced solidity. These findings
highlight that engineered shape descriptors not only drive high diagnostic accuracy but also align with
clinically interpretable morphological patterns, strengthening the case for explainable Al in
ophthalmology.

Although the reliance on simulated data limits immediate clinical application, the framework establishes
a transparent and scalable methodology that can be extended to real patient datasets. Future research will
focus on clinical validation, expansion of the feature set to include additional morphological and textural
cues, and hybrid approaches that integrate interpretable descriptors with deep learning embeddings. Such
efforts will enhance generalizability, reduce diagnostic variability, and facilitate the integration of
Al-driven tools into routine ophthalmic practice, particularly in resource-constrained settings.

Key Contributions
The following contributions are presented in this study to the field of eye diagnostics and explainable
artificial intelligence:

e Novel Dataset Simulation: Established a reproducible modelled dataset in ophthalmology
concerning herpes-like and non-herpes cases of corneal ulcers, with outliers mimicked to
demonstrate genuine variability.

e Clinically Relevant Feature Engineering: ldentified five interpretable shape-based features
(fractal dimension, solidity, eccentricity, branching index, and terminal bulb ratio), which are in
accordance with morphological aspects of HSV ulcers.

e Comprehensive Model Benchmarking: Six supervised learning classifiers (Random Forest,
Gradient Boosting, XGBoost, Logistic Regression, SVM, and KNN) are compared,; results clearly
demonstrate the superiority of ensemble models over simpler models on Accuracy, Recall, F1-
Score, and AUC measures.

e Explainability and Robustness: Validation of the importance of features and correlation trends,
which identify biologically relevant patterns, proving the model’s robustness even when dealing
with noisy data.

e Practical Use in Clinical and Educational Settings: Has developed a clear Al framework,
adaptable to actual patient data, and highly useful for the benefit of patients and also for educational
purposes for medical interns.
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Future Work
Based on the outcomes of this study, the following are proposed to be done to increase their clinical
relevance and accuracy:
e Clinical Validation: Validate the model using real-world slit lamp images of HSV and non-HSV
ulcers to test its accuracy in the real world.
e Sample Diversity: Increase the diversity of the sample to include people of different ages, severity
levels, imaging conditions, and other types of ulcers such as fungal, Traumatic, and Neuropathic.
e Hybrid Modelling: It involves blending the embeddings obtained using deep learning (CNN
lesion representation) with shape descriptors.
e Temporal Analysis: Use longitudinal data to analyze morphologic evolution and monitor the
progress of the ulcer and the effects of treatment.
e Mobile Deployment: Create simplified mobile applications for point-of-care screening of patients
having genital/herpes simplex Virus infection.
e Educational Integration: Create engaging learning modules for medical students and trainees
using feature visualization and classification result outputs to integrate into ophthalmology
education.
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