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Abstract

Medical imaging is an essential component of modern healthcare. Medical imaging techniques such as X-
ray, computed tomography (CT), and magnetic resonance imaging (MRI) provide complementary views
of anatomical structures and pathological changes, often serving as the first line of evidence in clinical
decision-making. The growing demand for faster and more accurate interpretation of medical images has
increased interest in artificial intelligence, in particular, convolutional neural networks (CNNs). CNNs
have achieved high performances in many computer vision tasks, but their effectiveness can vary
depending on the imaging modality, data quality, and the disease context. The images used in this
experiment include dental X-rays, bone fracture X-rays, brain stroke CT scans, and Alzheimer’s MRI
images. The goal of this study is to conduct a comparative evaluation of CNN architectures across multiple
two-dimensional medical imaging modalities. The results showed a strong overall performance, with high
accuracy and balanced precision-recall tradeoffs in most datasets, and particularly strong outcomes from
the brain stroke and dental datasets. The model consistently achieved competitive AUC values,
underscoring its robustness and adaptability across diverse imaging modalities.

Keywords : Machine learning; convolutional neural network; multiclass classification; medical imaging;
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1. Introduction

Medical imaging plays a crucial role in modern healthcare, supporting disease diagnosis, treatment
planning, and monitoring. Modalities such as X-ray, computed tomography (CT), and magnetic resonance
imaging (MRI) enable clinicians to visualize internal structures non-invasively and often serve as the first
step in identifying a disease or injury. However, diagnostic errors remain a concern, particularly in high-
volume clinical settings. A study has shown that radiologist fatigue from long workdays can reduce focus
and diagnostic accuracy, increasing the likelihood of missed fractures.! In such stressful environments,
where radiologists may interpret hundreds of images daily, subtle findings, overlapping anatomical
structures, or physician fatigue can contribute to diagnostic oversights. These errors carry significant
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clinical consequences: among 1054 patients studied, 199 experienced adverse outcomes, of whom 34.7%
died within 30 days, 30.7% required intensive care, and 51.8% experienced delays in necessary surgery.?

To address these challenges, researchers have increasingly explored artificial intelligence (Al),
particularly convolutional neural networks (CNNs), as decision-support tools for medical image
interpretation. CNNs are deep learning models specialized for image recognition tasks, capable of
automatically extracting hierarchical features from complex medical images with high accuracy. For
example, Al assistance in chest radiography has been shown to improve radiologists’ sensitivity in
detecting pneumonia, pneumothorax, and lung nodules while reducing interpretation time.>* Similarly,
CNN-based models have achieved performance comparable to that of experienced radiologists in
detecting thyroid nodules, hepatocellular carcinoma, and musculoskeletal fractures.>” Systematic reviews
and meta-analyses further confirm that Al systems often perform at levels similar to human experts, with
optimal outcomes achieved when Al complements radiologist expertise.®°

Despite these advances, challenges persist. CNNs often entail high computational cost and significant
training time, require large annotated datasets, and are prone to overfitting, especially with limited data.
Regularization strategies such as dropout, batch normalization, and data augmentation are essential to
mitigate these issues. Moreover, the predominance of supervised learning in CNN training limits
applicability in data-scarce settings, prompting research into unsupervised, semi-supervised, and transfer
learning approaches. Ongoing efforts in model compression, pruning, and quantization also aim to make
CNNs more lightweight for mobile and embedded devices.” Future directions include enhancing
interpretability through biologically inspired modeling, developing data-efficient architectures to reduce
dependency on annotated datasets, and integrating CNNs with complementary computational paradigms.°

In this study, we evaluated the performance of a CNN across four publicly available datasets representing
different medical imaging modalities. Our goal was to assess how imaging modality and image
characteristics influence diagnostic accuracy. The model achieved the highest performance on high-
contrast images with well-defined structural features, while performance declined on datasets with visually
similar or low-contrast features. These findings suggest that CNN performance is strongly influenced by
the visual characteristics and feature separability of the dataset rather than the imaging modality alone,
emphasizing the importance of image clarity and quality in medical Al applications. Under suitable
imaging conditions, CNNs may have the potential to support radiologists in achieving more accurate and
consistent interpretations, provided they are validated in clinical settings.

This paper is organized as follows: In the Methods and Materials section, we describe the datasets and
methods used, including data preparation and model development. The Results section reports the
experimental results and evaluation metrics. The Discussion section discusses the limitations of this work
and suggests future directions. Finally, the Conclusion section concludes the study.
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Methods and Materials
a. Dataset Description

For this research, four publicly available medical imaging datasets were acquired from Kaggle®, a
platform that provides reliable datasets for research in various domains. The datasets include the Dental
Radiography, the Bone Fracture Detection: Computer Vision Project, the Brain Stroke CT Dataset, and
the Alzheimer's Disease Multiclass Images Dataset. These datasets represent different medical imaging
modalities, such as X-ray, CT, and MRI, and were selected to evaluate the generalizability of CNNSs across
diverse classification tasks. A summary of the datasets is provided in Table 1, and detailed descriptions
are presented in the following subsections. The datasets are ordered by imaging modality and, within each
modality, by increasing number of classes. This order is maintained throughout the paper.

Table 1. Overview of the datasets.

Dataset Modality # Images # Class Indices/Names

Used Classes
Dental X-ray 4652 4 [0: Cavity, 1: Fillings, 2: Impacted Tooth, 3: Implant]
Bone X-ray 2060 6 [0: Elbow positive, 1. Fingers positive, 2: Forearm
Fracture fracture, 3: Humerus, 4: Shoulder fracture, 5: Wrist

positive]

Brain Stroke CT 6650 3 [0: Bleeding, 1: Ischemia, 2: Normal]
Alzheimer’s MRI 12000 4 [0:  MildDemented, 1: ModerateDemented, 2:

NonDemented, 3: VeryMildDemented]

i. Dental Dataset

The Dental Radiography dataset contains 1272 X-ray images, divided into training (1076), validation
(122), and test (74) sets, each accompanied by annotation files specifying bounding box coordinates and
class labels. Each bounding box defined a region of interest (ROI) corresponding to dental conditions such
as fillings, implants, impacted teeth, or cavities. To exclude unusually small or large regions, only ROIs
with width, height, and area within the interquartile range (25th—75th percentile) were retained. Each X-
ray was then converted to grayscale, and the retained ROIs were individually cropped and resized to 224
x 224 pixels. This procedure yielded a total of 4652 cropped images, with 4023 for training, 392 for
validation, and 237 for testing. Dental radiographs enable dentists to observe changes in hard and soft
tissues, assess dental and jawbone development in children, and evaluate facial or oral injuries. The dataset
is suitable for training and evaluating machine learning models for dental condition classification.

ii. Bone Fracture Dataset

The Bone Fracture Detection: Computer Vision Project dataset contains 4148 X-ray images divided into
training (3631), validation (348), and test (169) sets, each organized into separate folders for images and
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labels. The images are labeled across six classes based on anatomical location: Elbow Positive, Fingers
Positive, Forearm Fracture, Humerus, Shoulder Fracture, and Wrist Positive. Each image is annotated with
bounding boxes or pixel-level segmentation masks indicating the location and extent of the fracture.
Images with empty or missing annotations were excluded. This procedure yielded a total of 2060 images,
with 1804 for training, 173 for validation, and 83 for testing. To address the limited size of the initial test
set, the 1804 images from the initial training set were further redistributed into training (1443; 80%),
validation (180; 10%), and test (181; 10%) subsets, using an initial 80-20 split for training and validation
sets, followed by a 50-50 split of the validation set to create the test set. All random operations were
performed with a fixed seeding protocol as described in the Validation and Reliability section to ensure
reproducibility and performance stability. The dataset has a diversity of anatomical regions and fracture
types, making it suitable for training and evaluating machine learning models for automated fracture
detection and classification.

iii. Brain Stroke Dataset

The Brain Stroke CT Dataset contains 6650 labeled brain CT images categorized into three classes:
Bleeding (1093), Ischemia (1130), and Normal (4427). An additional External Test folder with 200 CT
scans was excluded from this study. The images were randomly split into training (4256; 64%), validation
(1064; 16%), and test (1330; 20%) subsets, using an initial 80—20 split for training and test sets, followed
by an 80-20 split of the training set to create the validation set. All random operations were performed
with a fixed seeding protocol as described in the Validation and Reliability section to ensure
reproducibility and performance stability. The dataset contains images with varying resolutions, reflecting
real-world variability in medical imaging, and includes both ischemic and hemorrhagic stroke types,
making it suitable for training and evaluating machine learning models for stroke detection and
classification.

iv. Alzheimer’s Dataset

The Alzheimer's Disease Multiclass Images Dataset contains 44000 brain MRI images categorized into
four classes based on disease severity: NonDemented (12800), VeryMildDemented (11200),
MildDemented (10000), and ModerateDemented (10000). For this study, 1000 images per class were
randomly sampled to create independent training, validation, and test splits. This procedure yielded 4000
images per split and a total of 12000 images. All images are skull-stripped, and the dataset was augmented
and upsampled by its curators to address class imbalance, making it suitable for training and evaluating
machine learning models for Alzheimer's stage classification.

b. Dataset Preparation

To ensure consistency and facilitate effective CNN training across all datasets, several preprocessing steps
were applied. Class distributions were balanced through downsampling of majority classes or selection of
a subset, reducing computational cost and mitigating the risk of bias, underfitting, or overfitting. All
images were resized to fixed dimensions: 256 x 256 pixels for the Bone Fracture dataset and 224 x 224
for the Dental, Brain Stroke, and Alzheimer’s datasets. Pixel intensities, initially ranging from 0-255, were
normalized to the range [0, 1] to standardize input ranges, improving optimization stability and training
efficiency. Class labels were converted into one-hot encoded vectors, with the encoding procedure
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adjusted according to each dataset’s number of classes, guaranteeing consistency across training,
validation, and test sets. No data augmentation techniques such as rotation, flipping, or contrast adjustment
were applied to any of the datasets, and no additional preprocessing steps beyond those described above
were performed.

¢. Model

All experiments were conducted in Google Colab using an NVIDIA Tesla T4 GPU with 12.6 GB RAM
and 15 GB storage. The environment was configured with Python 3.10, TensorFlow 2.15, and other
supporting libraries, including NumPy, Matplotlib, Pandas, Scikit-learn, Keras, Pathlib, and Tgdm.

i. Architecture

The CNN model architecture is shown in Figure 1.

Flatten

Convolution Pooling Convolution Pooling Convolution Pooling

Fig 1. CNN model architecture. The model consists of three convolutional blocks (Conv2D with ReLU
activation followed by MaxPooling), a flattening layer, and two dense layers with dropout regularization.
The final output layer utilizes softmax activation for multi-class classification. Each square in the feature
map represents 16 filters.

The model begins with a two-dimensional convolutional layer composed of 32 filters of size 3 x 3. This
layer applies the rectified linear unit (ReLU) activation function to introduce non-linearity and detect basic
features such as edges and textures. A subsequent max pooling layer with a 2 x 2 pool size reduces the
spatial dimensions of the feature maps, retaining salient information while minimizing computational load.

The second convolutional block expands to 64 filters (3 x 3 kernel) with ReLU activation, followed by
max pooling. This block allows the model to capture more complex patterns, such as curves and localized
shapes. The third convolutional block expands to 128 filters, continuing hierarchical feature extraction
and enabling learning of high-level abstractions such as object parts or structural patterns. Another max
pooling layer follows, after which the feature maps are flattened into a one-dimensional vector of
activations, preparing the data for fully connected processing.

The fully connected portion begins with a dense layer of 256 neurons with ReLU activation, integrating
the extracted features into complex and discriminative representations. To mitigate overfitting, a dropout
layer with a rate of 50% is applied, randomly deactivating half of the neurons during training. A second
dense layer of 128 neurons with ReLU activation follows. Another dropout layer, this time with a dropout
rate of 30%, provides additional regularization. The final output layer contains a number of neurons equal
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to the number of target classes, with softmax activation producing a probability distribution across classes
and enabling clear classification decisions.!! For example, a dataset with four classes (e.g., dental dataset;
fillings, implant, impacted tooth, cavity) corresponds to four output nodes, each representing one class.

ii. Training and Hyperparameters

The model was trained using the Adam optimizer with an initial learning rate of 110-4, providing a balance
between convergence speed and stability.!> No learning rate scheduling was applied. The categorical
cross-entropy loss function was employed, appropriate for multiclass classification tasks with softmax
outputs. Training was performed for a maximum of 100 epochs. Early stopping was employed with a
patience of 5 epochs, monitoring validation loss to prevent overfitting and unnecessary computation. The
model achieving the lowest validation loss during training was retained using model checkpointing. A
batch size of 64 was used for all datasets, except for the Bone Fracture dataset, which required a reduced
batch size of 32 due to GPU memory constraints associated with higher-resolution images.

Training hyperparameters and configurations used across all experiments are summarized in Table 2.

Table 2. Training hyperparameters and configurations used across all experiments

Parameter Value

Batch size 64 (32 for Bone Fracture dataset)

Early stopping Yes (patience = 5, monitor = ‘val loss’)
Learning rate 110-4

Learning rate scheduling Not used

Loss function Categorical cross-entropy

Maximum epochs 100

Optimizer Adam

iii. Validation and Reliability

To ensure the reliability of our findings, we conducted two independent training realizations for each
dataset. For the Bone Fracture, Brain Stroke, and Alzheimer’s datasets, the two runs utilized different
random seeds (42 and 123) to vary the data partitioning. For the Dental dataset, the experiment was
repeated to reduce the influence of training stochasticity. The original fixed partitions provided by the
dataset curators were used, as described in the Dental Dataset section, to preserve reproducibility, direct
comparison, and avoid potential data leakage arising from arbitrary re-splitting.

The results reported in the Results section represent the mean performance metrics across these
independent runs. This protocol was adopted to observe the model's sensitivity to data shuffling and to
provide an initial measure of performance stability given the computational constraints of the training
environment.
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Results

The performance of the model was evaluated on all four datasets. To confirm the reliability of the findings,
all metrics were averaged across two independent experimental runs. Quantitative metrics, including
accuracy, precision, recall, Fl-score, specificity, and AUC-ROC, were used to evaluate model
performance. Precision, recall, F1-score, and specificity were calculated using weighted averaging to
account for class imbalance. The evaluation results are summarized in Table 3 as Mean £ Range. While
performance metrics represent aggregated results, the accuracy and loss curves, confusion matrices, and
ROC curves presented in Figures 2, 3, and 4 correspond to the primary experimental realization to provide
a granular view of model behavior. For the confusion matrices and ROC curves, class indices correspond
to those reported in Table 1.

Table 3. Evaluation results. The best performance for each metric is highlighted in bold.

Dataset Evaluation metrics

Accuracy Precision Recall F1-score Specificity AUC

Dental 0.8439 0.8325 0.84390.8307 0.8536  0.97
Dental_2 (temporary) 0.8439 0.8325 0.84390.8307 0.8536  0.97
Bone Fracture 07182 07513 0.71820.7240 0.9421  0.93
Bone 2 (temporary) 0.8111 0.9166 0.80000.8543 0.9359  0.94
Brain Stroke 0.9436 0.9440 0.94360.9427 0.9056 0.9
Brain_2 (temporary) 0.9233 0.9230 0.92330.9223 0.9398  0.99
Alzheimer’s 07505 0.7581 0.75050.7500 0.9168  0.93

Alz_2 (temporary) 07792 0.7783 0.77920.7746 0.9264  0.95

Table 3. Evaluation results reported as the Mean + Range calculated from two independent realizations.
The best performance for each metric is highlighted in bold.

Dataset Evaluation metrics
Accuracy Precision Recall F1-score Specificity  AUC

Dental 0.8439 +0.8325 +0.8439 +0.8307 +0.8536 +0.9700 +
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Bone 0.7647 +0.8339 + 0.7591 +0.7892 +0.9390 +0.9350 +

Fracture 0.0465 0.0827 0.0409 0.0651 0.0031 0.0050

Brain Stroke 0.9335 +0.9335 +0.9335 +0.9325 +0.9227 +0.9900 +
0.0101 0.0105 0.0101 0.0102 0.0171 0.0000

Alzheimer’s 0.7649 + 0.7682 +0.7649 +0.7623 +0.9216 +0.9400 +
0.0144 0.0101 0.0144 0.0123 0.0048 0.0100
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Fig 2. Training and validation accuracy (top) and loss (bottom) over epochs for the datasets: (a) Dental,
(b) Bone Fracture, (c) Brain Stroke, and (d) Alzheimer’s.
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Fig 3. Confusion matrices for the datasets: (a) Dental, (b) Bone Fracture, (c) Brain Stroke, and (d)
Alzheimer’s.

1 2 1 2 - | 4 0 1 2
Predicted Label Predicted Label Predicted Label

(@)

1.01 1.04 > 1.0
Yos| Yos Yos 9
© © © ©
o o o o
v i v v v
S 0.6 S 0.6 3 S 0.6 >
%] [ ~— Class 0 (AUC = 0.94) v [
Soa &£ 0.4{ [f— ciass 1 (AUC = 0.89) So4 Soa
] —— Class 0 (AUC = 0.85) (] —— Class 2 (AUC = 0.95) [} e (] —— Class 0 (AUC = 0.91)
Fed 0.2 = Class 1 (AUC = 0.95) 2 0.2 —— Class 3 (AUC = 0.97) 2 0.2 —— Class 0 (AUC = 0.98) 2 02! —— Class 1 (AUC = 1.00)
=0 —— Class 2 (AUC = 0.96) 9 Class 4 (AUC = 0.96) =0 —— Class 1 (AUC = 0.99) =9 ' —— Class 2 (AUC = 0.92)
—— Class 3 (AUC = 0.97) | = Class 5 (AUC = 0.83) —— Class 2 (AUC = 0.98) —— Class 3 (AUC = 0.82)
0.0 Micro-average ROC (AUC = 0.97) 0.0! 14 Micro-average ROC (AUC = 0.93) 0.0 ¥ Micro-average ROC (AUC = 0.99) 0.0 ¥ Micro-average ROC (AUC = 0.93)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate False Positive Rate

False Positive Rate False Positive Rate
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a. Dental

The Dental dataset demonstrated stable and balanced performance, with a mean accuracy of 0.8439,
precision of 0.8325, recall of 0.8439, F1-score of 0.8307, and specificity of 0.8536. The results showed
zero variance across runs due to the fixed-split protocol. High specificity indicates that the model
effectively identified non-target dental conditions, supporting its suitability for automated dental
radiograph classification. The AUC of 0.97 confirms strong class separability. Figure 2a shows smooth
convergence with low variance, and the confusion matrix in Figure 3a indicates low misclassification rates
overall. However, the Cavity class exhibited noticeably poorer performance, with precision of 0.50, recall
of 0.09, and F1-score of 0.15, alongside higher confusion with the Implant and Fillings classes. This
suggests that the model struggles to distinguish cavities from visually similar dental features, likely due
to class imbalance, as only 11 of the 237 test images belonged to the Cavity class. These findings highlight
the potential need for additional training examples or targeted augmentation.

b. Bone Fracture

The Bone Fracture dataset posed the most significant challenges, but showed notable improvement across
realizations, achieving a mean accuracy of 0.076470.05, precision of 0.7513, recall of 0.7182, F1-score of
0.7240, and specificity of 0.9421. Higher precision than recall indicates the model was more successful at
correctly identifying fractures when it predicted positive cases, although it missed some true fractures.
High specificity (0.9390) and an AUC of 0.93 suggest the model captured class separability at the
probability level despite lower overall classification accuracy. Figure 2b shows slower and noisier
convergence, while the confusion matrix in Figure 3b reveals frequent misclassifications among certain
fracture types; images of Forearm Fracture and Fingers Positive were often misclassified as Elbow
Positive, reflecting challenges in distinguishing smaller or visually similar fracture types. Limited
representation of specific classes and subtle fracture features appear to be primary bottlenecks.

c. Brain Stroke

The brain stroke dataset achieved the highest and most consistent performance, with a mean accuracy of
0.9436, precision of 0.9440, recall of 0.9436, F1-score of 0.9427, and specificity of 0.9497. This indicates
the model reliably captured both positive and negative cases across different data partitions. Figure 2c
shows smooth convergence, indicating stable optimization during the training process, and Figure 3c
exhibits minimal misclassification, confirming that high contrast CT features facilitated accurate
discrimination. With Figure 4c displaying a sharply rising ROC curve nearing the maximum, the model
also demonstrated an AUC of 0.99, showcasing a near-perfect performance.

d. Alzheimer’s

The Alzheimer’s dataset showed moderate but stable performance across runs, with a mean accuracy of
0.7505, precision of 0.7581, recall of 0.7505, F1-score of 0.7500, and specificity of 0.9168. Precision
slightly exceeding recall suggests the model was better at avoiding false positives than capturing all true
cases. The consistency of these results across different seeds (Range = 0.01) reinforces the model’s
reliability. Figure 2d indicates slower convergence and various fluctuations, and Figure 3d shows frequent
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misclassifications between adjacent classes, often confusing NonDemented with VeryMildDemented and
VeryMildDemented with MildDemented. This is likely due to the subtle differences across Alzheimer’s
stages and the variability of MRI scans. With an AUC of 0.93, Figure 4d confirms reasonable separability
between classes despite these challenges.

Discussion

Across datasets, the Brain Stroke dataset achieved the highest and most consistent performance,
confirming that high-contrast CT features and clear structural abnormalities facilitate highly accurate
discrimination. In contrast, the Bone Fracture and Alzheimer’s datasets exhibited moderate performance.
While the Bone Fracture dataset showed improved reliability across runs, it continues to reflect the
challenges of distinguishing subtle, small-scale fracture lines across multiple anatomical classes. Similarly,
the Alzheimer’s dataset highlighted the difficulties posed by subtle and variable MRI features. Notably,
the Dental dataset maintained strong results, benefiting from the clear structural features of radiographs,
despite the specific challenges identified in the Cavity class.

Despite these differences in mean classification accuracy, the consistently high AUCs and the low variance
across realizations suggest that the CNNs learned meaningful and stable separability across all datasets.
Future improvements in dataset balancing, targeted data augmentation, or the implementation of transfer
learning could further enhance performance, particularly for the more underrepresented or visually
ambiguous cases found in the Bone Fracture and Alzheimer’s datasets.

We acknowledge the limitations regarding the statistical depth of our performance variance analysis.
While we conducted dual-run experiments across all datasets to observe model stability, the high
computational requirements and GPU time constraints associated with training CNN architectures on
large-scale medical datasets precluded the use of intensive k-fold cross-validation or statistical testing (e.qg.,
t-tests or ANOVA). However, the minimal variance observed between runs (<5%) suggests that the model
is robust to different data partitions.

This study relied on publicly available datasets, which may not represent the full diversity of real-world
medical imaging. Additional validation using diverse, real-world imaging data is necessary before
extending these comparative modeling results toward clinical applications. Variability in image quality,
scanner settings, and patient demographics could also affect generalizability'3. Future work should focus
on expanding datasets, particularly for underrepresented classes, and leveraging techniques such as
attention mechanisms, multimodal learning, and transfer learning to improve performance on subtle or
complex imaging features. These enhancements could improve the generalizability of CNNs, forming a
starting place for future studies that evaluate clinical reliability.

Additionally, this study did not compare our model to pretrained architectures such as those using
ImageNet. Although transfer learning is a common strategy for improving performance on small or subtle
medical imaging datasets, using pretrained models was not possible within the available hardware
resources. The significant GPU memory requirements and extended training times associated with state-
of-the-art pretrained CNNs exceeded the constraints of this project. As a result, the comparative

AIJFR26013071 Volume 7, Issue 1 (January-February 2026) 10


http://www.aijfr.com/

Advanced International Journal for Research (AIJFR)

E-ISSN: 3048-7641 e Website: www.aijffr.com e Email: editor@aijfr.com

evaluations presented here reflect only models trained from scratch, which may underestimate the
performance achievable with more compute-intensive approaches.

Across the four imaging modalities, the performance patterns observed are consistent with modality-
dependent limitations in previous deep learning research. The Dental and Bone Fracture datasets, which
both used X-ray imaging, required the model to detect fine, low-contrast structural differences which
CNNss trained from scratch often struggle to learn reliably4. This aligns with known CNN sensitivity to
texture and contrast, particularly when class boundaries are small or visually ambiguous®. In contrast, the
Brain Stroke CT dataset exhibited stronger class separability due to larger, more distinct density
differences between ischemic, hemorrhagic, and normal tissue, allowing the model to achieve higher AUC
values despite class imbalance®. The Alzheimer’s MRI dataset displayed the opposite pattern. Although
AUC values were high, accuracy and F1-scores were lower. This reflects the challenge CNNs face when
distinguishing disease severity stages that differ by subtle volumetric changes?’. These modality-specific
outcomes are similar to established limitations in CNNs with their dependence on high-contrast features,
vulnerability to class imbalance, and difficulty modeling nuanced anatomical variation in particular. This
supports that the observed errors are not dataset artifacts but reflect broader constraints of CNN-based
medical image classification systems.

Some of the performances observed across the four datasets can be related to this study’s technical
constraints. The imbalance in training and validation curves, particularly in the Bone Fracture and
Alzheimer’s datasets, is reflected in their lower recall. This suggests the inherent visual complexity and
subtle class boundaries of these modalities made it difficult for a model trained from scratch to generalize
effectively. The confusion matrices reveal that misclassifications were concentrated in visually similar
classes. This indicates that the model’s capacity for fine-grained feature extraction was limited compared
to deeper, pretrained architectures. This is further evidenced by AUC values that are noticeably higher
than accuracy or F1-scores, implying that while the model has high discriminative potential, it struggled
to achieve consistent precision and recall across categories where visual features are highly overlapped.

Despite the robust numerical evaluation provided, this study is not without limitations. Specifically, visual
interpretability tools, such as Grad-CAM heatmaps or feature visualizations, were not implemented in the
current pipeline. While the confusion matrices and metric gaps offer a proxy for understanding model
behavior, future work will integrate these visualization techniques to more precisely localize the diagnostic
features the CNN prioritizes across different medical modalities.

Conclusion

This study conducted a comparative evaluation of CNN performance across multiple medical imaging
modalities, including X-rays, CT, and MRI. The results indicate that CNNs perform best on high-contrast
images with clearly distinguishable features, whereas high variability and subtle inter-class differences
limit performance. Dataset characteristics appear to influence outcomes more than imaging modality alone.
These findings underscore both the potential and the limitations of CNNs, emphasizing that performance
depends heavily on image quality and feature representation. Further research on advanced architectures,
transfer learning, and dataset expansion will be important for improving model performance and future
studies on potential clinical applications.
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Tables and Figures

Table 1. Overview of the datasets.

Dataset Modality # Images # Class Indices/Names

Used Classes
Dental X-ray 4652 4 [0: Cavity, 1: Fillings, 2: Impacted Tooth, 3: Implant]
Bone X-ray 2060 6 [0: Elbow positive, 1: Fingers positive, 2: Forearm
Fracture fracture, 3: Humerus, 4: Shoulder fracture, 5: Wrist

positive]

Brain Stroke CT 6650 3 [0: Bleeding, 1: Ischemia, 2: Normal]
Alzheimer’s MRI 12000 4 [0:  MildDemented, 1: ModerateDemented, 2:

NonDemented, 3: VeryMildDemented]

Flatten

Convolution Pooling Convolution Pooling Convolution Pooling

Fig 1. CNN model architecture. The model consists of three convolutional blocks (Conv2D with ReLU
activation followed by MaxPooling), a flattening layer, and two dense layers with dropout regularization.
The final output layer utilizes softmax activation for multi-class classification. Each square in the feature
map represents 16 filters.
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Table 2. Training hyperparameters and configurations used across all experiments

Parameter Value

Batch size 64 (32 for Bone Fracture dataset)

Early stopping Yes (patience = 5, monitor = ‘val loss’)
Learning rate 110-4

Learning rate scheduling Not used

Loss function Categorical cross-entropy

Maximum epochs 100

Optimizer Adam

Table 3. Evaluation results reported as the Mean + Range calculated from two independent realizations.

The best performance for each metric is highlighted in bold.

Dataset Evaluation metrics
Accuracy Precision Recall F1-score Specificity  AUC
Dental 0.8439 +0.8325 +0.8439 +0.8307 +0.8536 +0.9700 +
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Bone 0.7647 +0.8340 +0.7591 +0.7892 +0.9390 +0.9350 +
Fracture 0.0929 0.1653 0.0818 0.1303 0.0062 0.0100
Brain Stroke 0.9335 +0.9335 +0.9335 +0.9325 +0.9227 +0.9900 +
0.0203 0.0210 0.0203 0.0204 0.0342 0.0000
Alzheimer’s 0.7649 +0.7682 +0.7649 +0.7623 +0.9216 +0.9400 +
0.0287 0.0202 0.0287 0.0246 0.0096 0.0200
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Fig 2. Training and validation accuracy (top) and loss (bottom) over epochs for the datasets: (a) Dental,

(b) Bone Fracture, (c) Brain Stroke, and (d) Alzheimer’s.
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Fig 4. ROC curves for the datasets: (a) Dental, (b) Bone Fracture, (¢) Brain Stroke, and (d) Alzheimer’s.
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