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Abstract 

Medical imaging is an essential component of modern healthcare. Medical imaging techniques such as X-

ray, computed tomography (CT), and magnetic resonance imaging (MRI) provide complementary views 

of anatomical structures and pathological changes, often serving as the first line of evidence in clinical 

decision-making. The growing demand for faster and more accurate interpretation of medical images has 

increased interest in artificial intelligence, in particular, convolutional neural networks (CNNs). CNNs 

have achieved high performances in many computer vision tasks, but their effectiveness can vary 

depending on the imaging modality, data quality, and the disease context. The images used in this 

experiment include dental X-rays, bone fracture X-rays, brain stroke CT scans, and Alzheimer’s MRI 

images. The goal of this study is to conduct a comparative evaluation of CNN architectures across multiple 

two-dimensional medical imaging modalities. The results showed a strong overall performance, with high 

accuracy and balanced precision-recall tradeoffs in most datasets, and particularly strong outcomes from 

the brain stroke and dental datasets. The model consistently achieved competitive AUC values, 

underscoring its robustness and adaptability across diverse imaging modalities. 

Keywords : Machine learning; convolutional neural network; multiclass classification; medical imaging; 

magnetic resonance imaging; computed tomography; X-ray; radiography 

1. Introduction 

Medical imaging plays a crucial role in modern healthcare, supporting disease diagnosis, treatment 

planning, and monitoring. Modalities such as X-ray, computed tomography (CT), and magnetic resonance 

imaging (MRI) enable clinicians to visualize internal structures non-invasively and often serve as the first 

step in identifying a disease or injury. However, diagnostic errors remain a concern, particularly in high-

volume clinical settings. A study has shown that radiologist fatigue from long workdays can reduce focus 

and diagnostic accuracy, increasing the likelihood of missed fractures.1 In such stressful environments, 

where radiologists may interpret hundreds of images daily, subtle findings, overlapping anatomical 

structures, or physician fatigue can contribute to diagnostic oversights. These errors carry significant 
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clinical consequences: among 1054 patients studied, 199 experienced adverse outcomes, of whom 34.7% 

died within 30 days, 30.7% required intensive care, and 51.8% experienced delays in necessary surgery.2 

To address these challenges, researchers have increasingly explored artificial intelligence (AI), 

particularly convolutional neural networks (CNNs), as decision-support tools for medical image 

interpretation. CNNs are deep learning models specialized for image recognition tasks, capable of 

automatically extracting hierarchical features from complex medical images with high accuracy. For 

example, AI assistance in chest radiography has been shown to improve radiologists’ sensitivity in 

detecting pneumonia, pneumothorax, and lung nodules while reducing interpretation time.3,4 Similarly, 

CNN-based models have achieved performance comparable to that of experienced radiologists in 

detecting thyroid nodules, hepatocellular carcinoma, and musculoskeletal fractures.5-7 Systematic reviews 

and meta-analyses further confirm that AI systems often perform at levels similar to human experts, with 

optimal outcomes achieved when AI complements radiologist expertise.8,9 

Despite these advances, challenges persist. CNNs often entail high computational cost and significant 

training time, require large annotated datasets, and are prone to overfitting, especially with limited data. 

Regularization strategies such as dropout, batch normalization, and data augmentation are essential to 

mitigate these issues. Moreover, the predominance of supervised learning in CNN training limits 

applicability in data-scarce settings, prompting research into unsupervised, semi-supervised, and transfer 

learning approaches. Ongoing efforts in model compression, pruning, and quantization also aim to make 

CNNs more lightweight for mobile and embedded devices.7 Future directions include enhancing 

interpretability through biologically inspired modeling, developing data-efficient architectures to reduce 

dependency on annotated datasets, and integrating CNNs with complementary computational paradigms.10 

In this study, we evaluated the performance of a CNN across four publicly available datasets representing 

different medical imaging modalities. Our goal was to assess how imaging modality and image 

characteristics influence diagnostic accuracy. The model achieved the highest performance on high-

contrast images with well-defined structural features, while performance declined on datasets with visually 

similar or low-contrast features. These findings suggest that CNN performance is strongly influenced by 

the visual characteristics and feature separability of the dataset rather than the imaging modality alone, 

emphasizing the importance of image clarity and quality in medical AI applications. Under suitable 

imaging conditions, CNNs may have the potential to support radiologists in achieving more accurate and 

consistent interpretations, provided they are validated in clinical settings. 

This paper is organized as follows: In the Methods and Materials section, we describe the datasets and 

methods used, including data preparation and model development. The Results section reports the 

experimental results and evaluation metrics. The Discussion section discusses the limitations of this work 

and suggests future directions. Finally, the Conclusion section concludes the study. 
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Methods and Materials 

a. Dataset Description 

For this research, four publicly available medical imaging datasets were acquired from Kaggle®, a 

platform that provides reliable datasets for research in various domains. The datasets include the Dental 

Radiography, the Bone Fracture Detection: Computer Vision Project, the Brain Stroke CT Dataset, and 

the Alzheimer's Disease Multiclass Images Dataset. These datasets represent different medical imaging 

modalities, such as X-ray, CT, and MRI, and were selected to evaluate the generalizability of CNNs across 

diverse classification tasks. A summary of the datasets is provided in Table 1, and detailed descriptions 

are presented in the following subsections. The datasets are ordered by imaging modality and, within each 

modality, by increasing number of classes. This order is maintained throughout the paper. 

Table 1. Overview of the datasets. 

Dataset Modality # Images 

Used 

# 

Classes 

Class Indices/Names 

Dental X-ray 4652 4 [0: Cavity, 1: Fillings, 2: Impacted Tooth, 3: Implant] 

Bone 

Fracture 

X-ray  2060 6 [0: Elbow positive, 1: Fingers positive, 2: Forearm 

fracture, 3: Humerus, 4: Shoulder fracture, 5: Wrist 

positive] 

Brain Stroke CT 6650  3 [0: Bleeding, 1: Ischemia, 2: Normal] 

Alzheimer’s MRI 12000 4 [0: MildDemented, 1: ModerateDemented, 2: 

NonDemented, 3: VeryMildDemented] 

i. Dental Dataset  

The Dental Radiography dataset contains 1272 X-ray images, divided into training (1076), validation 

(122), and test (74) sets, each accompanied by annotation files specifying bounding box coordinates and 

class labels. Each bounding box defined a region of interest (ROI) corresponding to dental conditions such 

as fillings, implants, impacted teeth, or cavities. To exclude unusually small or large regions, only ROIs 

with width, height, and area within the interquartile range (25th–75th percentile) were retained. Each X-

ray was then converted to grayscale, and the retained ROIs were individually cropped and resized to 224 

× 224 pixels. This procedure yielded a total of 4652 cropped images, with 4023 for training, 392 for 

validation, and 237 for testing. Dental radiographs enable dentists to observe changes in hard and soft 

tissues, assess dental and jawbone development in children, and evaluate facial or oral injuries. The dataset 

is suitable for training and evaluating machine learning models for dental condition classification. 

ii. Bone Fracture Dataset 

The Bone Fracture Detection: Computer Vision Project dataset contains 4148 X-ray images divided into 

training (3631), validation (348), and test (169) sets, each organized into separate folders for images and 
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labels. The images are labeled across six classes based on anatomical location: Elbow Positive, Fingers 

Positive, Forearm Fracture, Humerus, Shoulder Fracture, and Wrist Positive. Each image is annotated with 

bounding boxes or pixel-level segmentation masks indicating the location and extent of the fracture. 

Images with empty or missing annotations were excluded. This procedure yielded a total of 2060 images, 

with 1804 for training, 173 for validation, and 83 for testing. To address the limited size of the initial test 

set, the 1804 images from the initial training set were further redistributed into training (1443; 80%), 

validation (180; 10%), and test (181; 10%) subsets, using an initial 80-20 split for training and validation 

sets, followed by a 50-50 split of the validation set to create the test set. All random operations were 

performed with a fixed seeding protocol as described in the Validation and Reliability section to ensure 

reproducibility and performance stability. The dataset has a diversity of anatomical regions and fracture 

types, making it suitable for training and evaluating machine learning models for automated fracture 

detection and classification. 

iii. Brain Stroke Dataset 

The Brain Stroke CT Dataset contains 6650 labeled brain CT images categorized into three classes: 

Bleeding (1093), Ischemia (1130), and Normal (4427). An additional External Test folder with 200 CT 

scans was excluded from this study. The images were randomly split into training (4256; 64%), validation 

(1064; 16%), and test (1330; 20%) subsets, using an initial 80–20 split for training and test sets, followed 

by an 80–20 split of the training set to create the validation set. All random operations were performed 

with a fixed seeding protocol as described in the Validation and Reliability section to ensure 

reproducibility and performance stability. The dataset contains images with varying resolutions, reflecting 

real-world variability in medical imaging, and includes both ischemic and hemorrhagic stroke types, 

making it suitable for training and evaluating machine learning models for stroke detection and 

classification. 

iv. Alzheimer’s Dataset 

The Alzheimer's Disease Multiclass Images Dataset contains 44000 brain MRI images categorized into 

four classes based on disease severity: NonDemented (12800), VeryMildDemented (11200), 

MildDemented (10000), and ModerateDemented (10000). For this study, 1000 images per class were 

randomly sampled to create independent training, validation, and test splits. This procedure yielded 4000 

images per split and a total of 12000 images. All images are skull-stripped, and the dataset was augmented 

and upsampled by its curators to address class imbalance, making it suitable for training and evaluating 

machine learning models for Alzheimer's stage classification. 

b. Dataset Preparation 

To ensure consistency and facilitate effective CNN training across all datasets, several preprocessing steps 

were applied. Class distributions were balanced through downsampling of majority classes or selection of 

a subset, reducing computational cost and mitigating the risk of bias, underfitting, or overfitting. All 

images were resized to fixed dimensions: 256 × 256 pixels for the Bone Fracture dataset and 224 × 224 

for the Dental, Brain Stroke, and Alzheimer’s datasets. Pixel intensities, initially ranging from 0-255, were 

normalized to the range [0, 1] to standardize input ranges, improving optimization stability and training 

efficiency. Class labels were converted into one-hot encoded vectors, with the encoding procedure 
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adjusted according to each dataset’s number of classes, guaranteeing consistency across training, 

validation, and test sets. No data augmentation techniques such as rotation, flipping, or contrast adjustment 

were applied to any of the datasets, and no additional preprocessing steps beyond those described above 

were performed. 

c. Model 

All experiments were conducted in Google Colab using an NVIDIA Tesla T4 GPU with 12.6 GB RAM 

and 15 GB storage. The environment was configured with Python 3.10, TensorFlow 2.15, and other 

supporting libraries, including NumPy, Matplotlib, Pandas, Scikit-learn, Keras, Pathlib, and Tqdm.  

i. Architecture  

The CNN model architecture is shown in Figure 1. 

 
Fig 1. CNN model architecture. The model consists of three convolutional blocks (Conv2D with ReLU 

activation followed by MaxPooling), a flattening layer, and two dense layers with dropout regularization. 

The final output layer utilizes softmax activation for multi-class classification. Each square in the feature 

map represents 16 filters. 

The model begins with a two-dimensional convolutional layer composed of 32 filters of size 3 × 3. This 

layer applies the rectified linear unit (ReLU) activation function to introduce non-linearity and detect basic 

features such as edges and textures. A subsequent max pooling layer with a 2 × 2 pool size reduces the 

spatial dimensions of the feature maps, retaining salient information while minimizing computational load. 

The second convolutional block expands to 64 filters (3 × 3 kernel) with ReLU activation, followed by 

max pooling. This block allows the model to capture more complex patterns, such as curves and localized 

shapes. The third convolutional block expands to 128 filters, continuing hierarchical feature extraction 

and enabling learning of high-level abstractions such as object parts or structural patterns. Another max 

pooling layer follows, after which the feature maps are flattened into a one-dimensional vector of 

activations, preparing the data for fully connected processing.  

The fully connected portion begins with a dense layer of 256 neurons with ReLU activation, integrating 

the extracted features into complex and discriminative representations. To mitigate overfitting, a dropout 

layer with a rate of 50% is applied, randomly deactivating half of the neurons during training. A second 

dense layer of 128 neurons with ReLU activation follows. Another dropout layer, this time with a dropout 

rate of 30%, provides additional regularization. The final output layer contains a number of neurons equal 
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to the number of target classes, with softmax activation producing a probability distribution across classes 

and enabling clear classification decisions.11 For example, a dataset with four classes (e.g., dental dataset; 

fillings, implant, impacted tooth, cavity) corresponds to four output nodes, each representing one class. 

ii. Training and Hyperparameters 

The model was trained using the Adam optimizer with an initial learning rate of 110-4, providing a balance 

between convergence speed and stability.12 No learning rate scheduling was applied. The categorical 

cross-entropy loss function was employed, appropriate for multiclass classification tasks with softmax 

outputs. Training was performed for a maximum of 100 epochs. Early stopping was employed with a 

patience of 5 epochs, monitoring validation loss to prevent overfitting and unnecessary computation. The 

model achieving the lowest validation loss during training was retained using model checkpointing. A 

batch size of 64 was used for all datasets, except for the Bone Fracture dataset, which required a reduced 

batch size of 32 due to GPU memory constraints associated with higher-resolution images. 

Training hyperparameters and configurations used across all experiments are summarized in Table 2. 

Table 2. Training hyperparameters and configurations used across all experiments 

Parameter Value 

Batch size 64 (32 for Bone Fracture dataset) 

Early stopping Yes (patience = 5, monitor = ‘val_loss’) 

Learning rate 110-4 

Learning rate scheduling Not used 

Loss function Categorical cross-entropy 

Maximum epochs 100 

Optimizer Adam 

iii. Validation and Reliability 

To ensure the reliability of our findings, we conducted two independent training realizations for each 

dataset. For the Bone Fracture, Brain Stroke, and Alzheimer’s datasets, the two runs utilized different 

random seeds (42 and 123) to vary the data partitioning. For the Dental dataset, the experiment was 

repeated to reduce the influence of training stochasticity. The original fixed partitions provided by the 

dataset curators were used, as described in the Dental Dataset section, to preserve reproducibility, direct 

comparison, and avoid potential data leakage arising from arbitrary re-splitting. 

The results reported in the Results section represent the mean performance metrics across these 

independent runs. This protocol was adopted to observe the model's sensitivity to data shuffling and to 

provide an initial measure of performance stability given the computational constraints of the training 

environment. 
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Results 

The performance of the model was evaluated on all four datasets. To confirm the reliability of the findings, 

all metrics were averaged across two independent experimental runs. Quantitative metrics, including 

accuracy, precision, recall, F1-score, specificity, and AUC-ROC, were used to evaluate model 

performance. Precision, recall, F1-score, and specificity were calculated using weighted averaging to 

account for class imbalance. The evaluation results are summarized in Table 3 as Mean ± Range. While 

performance metrics represent aggregated results, the accuracy and loss curves, confusion matrices, and 

ROC curves presented in Figures 2, 3, and 4 correspond to the primary experimental realization to provide 

a granular view of model behavior. For the confusion matrices and ROC curves, class indices correspond 

to those reported in Table 1. 

Table 3. Evaluation results. The best performance for each metric is highlighted in bold. 

Dataset Evaluation metrics 

Accuracy Precision Recall F1-score Specificity AUC 

Dental 0.8439 0.8325 0.8439 0.8307 0.8536 0.97 

Dental_2 (temporary) 0.8439 0.8325 0.8439 0.8307 0.8536 0.97 

Bone Fracture 0.7182 0.7513 0.7182 0.7240 0.9421 0.93 

Bone_2 (temporary) 0.8111 0.9166 0.8000 0.8543 0.9359 0.94 

Brain Stroke 0.9436 0.9440 0.9436 0.9427 0.9056 0.99 

Brain_2 (temporary) 0.9233 0.9230 0.9233 0.9223 0.9398 0.99 

Alzheimer’s 0.7505 0.7581 0.7505 0.7500 0.9168 0.93 

Alz_2 (temporary) 0.7792 0.7783 0.7792 0.7746 0.9264 0.95 

 

Table 3. Evaluation results reported as the Mean ± Range calculated from two independent realizations. 

The best performance for each metric is highlighted in bold. 

 

Dataset Evaluation metrics 

Accuracy Precision Recall F1-score Specificity AUC 

Dental 0.8439 ± 

0.0000 

0.8325 ± 

0.0000 

0.8439 ± 

0.0000 

0.8307 ± 

0.0000 

0.8536 ± 

0.0000 

0.9700 ± 

0.0000  

Bone 

Fracture 

0.7647 ± 

0.0465 

0.8339 ± 

0.0827  

 0.7591 ± 

0.0409 

0.7892 ± 

0.0651 

0.9390 ± 

0.0031 

0.9350 ± 

0.0050 

Brain Stroke 0.9335 ± 

0.0101 

0.9335 ± 

0.0105  

0.9335 ± 

0.0101 

0.9325 ± 

0.0102 

0.9227 ± 

0.0171 

0.9900 ± 

0.0000 

Alzheimer’s 0.7649 ± 

0.0144 

 0.7682 ± 

0.0101 

0.7649 ± 

0.0144 

0.7623 ± 

0.0123 

0.9216 ± 

0.0048 

0.9400 ± 

0.0100 
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Fig 2. Training and validation accuracy (top) and loss (bottom) over epochs for the datasets: (a) Dental, 

(b) Bone Fracture, (c) Brain Stroke, and (d) Alzheimer’s. 

 

 
Fig 3. Confusion matrices for the datasets: (a) Dental, (b) Bone Fracture, (c) Brain Stroke, and (d) 

Alzheimer’s. 

 

 

Fig 4. ROC curves for the datasets: (a) Dental, (b) Bone Fracture, (c) Brain Stroke, and (d) Alzheimer’s. 
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a. Dental 

The Dental dataset demonstrated stable and balanced performance, with a mean accuracy of 0.8439, 

precision of 0.8325, recall of 0.8439, F1-score of 0.8307, and specificity of 0.8536. The results showed 

zero variance across runs due to the fixed-split protocol. High specificity indicates that the model 

effectively identified non-target dental conditions, supporting its suitability for automated dental 

radiograph classification. The AUC of 0.97 confirms strong class separability. Figure 2a shows smooth 

convergence with low variance, and the confusion matrix in Figure 3a indicates low misclassification rates 

overall. However, the Cavity class exhibited noticeably poorer performance, with precision of 0.50, recall 

of 0.09, and F1-score of 0.15, alongside higher confusion with the Implant and Fillings classes. This 

suggests that the model struggles to distinguish cavities from visually similar dental features, likely due 

to class imbalance, as only 11 of the 237 test images belonged to the Cavity class. These findings highlight 

the potential need for additional training examples or targeted augmentation. 

b. Bone Fracture 

The Bone Fracture dataset posed the most significant challenges, but showed notable improvement across 

realizations, achieving a mean accuracy of 0.076470.05, precision of 0.7513, recall of 0.7182, F1-score of 

0.7240, and specificity of 0.9421. Higher precision than recall indicates the model was more successful at 

correctly identifying fractures when it predicted positive cases, although it missed some true fractures. 

High specificity (0.9390) and an AUC of 0.93 suggest the model captured class separability at the 

probability level despite lower overall classification accuracy. Figure 2b shows slower and noisier 

convergence, while the confusion matrix in Figure 3b reveals frequent misclassifications among certain 

fracture types; images of Forearm Fracture and Fingers Positive were often misclassified as Elbow 

Positive, reflecting challenges in distinguishing smaller or visually similar fracture types. Limited 

representation of specific classes and subtle fracture features appear to be primary bottlenecks. 

c. Brain Stroke 

The brain stroke dataset achieved the highest and most consistent performance, with a mean accuracy of 

0.9436, precision of 0.9440, recall of 0.9436, F1-score of 0.9427, and specificity of 0.9497. This indicates 

the model reliably captured both positive and negative cases across different data partitions. Figure 2c 

shows smooth convergence, indicating stable optimization during the training process, and Figure 3c 

exhibits minimal misclassification, confirming that high contrast CT features facilitated accurate 

discrimination. With Figure 4c displaying a sharply rising ROC curve nearing the maximum, the model 

also demonstrated an AUC of 0.99, showcasing a near-perfect performance. 

d. Alzheimer’s 

The Alzheimer’s dataset showed moderate but stable performance across runs, with a mean accuracy of 

0.7505, precision of 0.7581, recall of 0.7505, F1-score of 0.7500, and specificity of 0.9168. Precision 

slightly exceeding recall suggests the model was better at avoiding false positives than capturing all true 

cases. The consistency of these results across different seeds (Range = 0.01) reinforces the model’s 

reliability. Figure 2d indicates slower convergence and various fluctuations, and Figure 3d shows frequent 
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misclassifications between adjacent classes, often confusing NonDemented with VeryMildDemented and 

VeryMildDemented with MildDemented. This is likely due to the subtle differences across Alzheimer’s 

stages and the variability of MRI scans. With an AUC of 0.93, Figure 4d confirms reasonable separability 

between classes despite these challenges. 

Discussion 

Across datasets, the Brain Stroke dataset achieved the highest and most consistent performance, 

confirming that high-contrast CT features and clear structural abnormalities facilitate highly accurate 

discrimination. In contrast, the Bone Fracture and Alzheimer’s datasets exhibited moderate performance. 

While the Bone Fracture dataset showed improved reliability across runs, it continues to reflect the 

challenges of distinguishing subtle, small-scale fracture lines across multiple anatomical classes. Similarly, 

the Alzheimer’s dataset highlighted the difficulties posed by subtle and variable MRI features. Notably, 

the Dental dataset maintained strong results, benefiting from the clear structural features of radiographs, 

despite the specific challenges identified in the Cavity class. 

Despite these differences in mean classification accuracy, the consistently high AUCs and the low variance 

across realizations suggest that the CNNs learned meaningful and stable separability across all datasets. 

Future improvements in dataset balancing, targeted data augmentation, or the implementation of transfer 

learning could further enhance performance, particularly for the more underrepresented or visually 

ambiguous cases found in the Bone Fracture and Alzheimer’s datasets. 

We acknowledge the limitations regarding the statistical depth of our performance variance analysis. 

While we conducted dual-run experiments across all datasets to observe model stability, the high 

computational requirements and GPU time constraints associated with training CNN architectures on 

large-scale medical datasets precluded the use of intensive k-fold cross-validation or statistical testing (e.g., 

t-tests or ANOVA). However, the minimal variance observed between runs (<5%) suggests that the model 

is robust to different data partitions. 

This study relied on publicly available datasets, which may not represent the full diversity of real-world 

medical imaging. Additional validation using diverse, real-world imaging data is necessary before 

extending these comparative modeling results toward clinical applications. Variability in image quality, 

scanner settings, and patient demographics could also affect generalizability13. Future work should focus 

on expanding datasets, particularly for underrepresented classes, and leveraging techniques such as 

attention mechanisms, multimodal learning, and transfer learning to improve performance on subtle or 

complex imaging features. These enhancements could improve the generalizability of CNNs, forming a 

starting place for future studies that evaluate clinical reliability. 

Additionally, this study did not compare our model to pretrained architectures such as those using 

ImageNet. Although transfer learning is a common strategy for improving performance on small or subtle 

medical imaging datasets, using pretrained models was not possible within the available hardware 

resources. The significant GPU memory requirements and extended training times associated with state-

of-the-art pretrained CNNs exceeded the constraints of this project. As a result, the comparative 
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evaluations presented here reflect only models trained from scratch, which may underestimate the 

performance achievable with more compute-intensive approaches. 

Across the four imaging modalities, the performance patterns observed are consistent with modality-

dependent limitations in previous deep learning research. The Dental and Bone Fracture datasets, which 

both used X-ray imaging, required the model to detect fine, low-contrast structural differences which 

CNNs trained from scratch often struggle to learn reliably14. This aligns with known CNN sensitivity to 

texture and contrast, particularly when class boundaries are small or visually ambiguous15. In contrast, the 

Brain Stroke CT dataset exhibited stronger class separability due to larger, more distinct density 

differences between ischemic, hemorrhagic, and normal tissue, allowing the model to achieve higher AUC 

values despite class imbalance16. The Alzheimer’s MRI dataset displayed the opposite pattern. Although 

AUC values were high, accuracy and F1-scores were lower. This reflects the challenge CNNs face when 

distinguishing disease severity stages that differ by subtle volumetric changes17. These modality-specific 

outcomes are similar to established limitations in CNNs with their dependence on high-contrast features, 

vulnerability to class imbalance, and difficulty modeling nuanced anatomical variation in particular. This 

supports that the observed errors are not dataset artifacts but reflect broader constraints of CNN-based 

medical image classification systems. 

Some of the performances observed across the four datasets can be related to this study’s technical 

constraints. The imbalance in training and validation curves, particularly in the Bone Fracture and 

Alzheimer’s datasets, is reflected in their lower recall. This suggests the inherent visual complexity and 

subtle class boundaries of these modalities made it difficult for a model trained from scratch to generalize 

effectively. The confusion matrices reveal that misclassifications were concentrated in visually similar 

classes. This indicates that the model’s capacity for fine-grained feature extraction was limited compared 

to deeper, pretrained architectures. This is further evidenced by AUC values that are noticeably higher 

than accuracy or F1-scores, implying that while the model has high discriminative potential, it struggled 

to achieve consistent precision and recall across categories where visual features are highly overlapped. 

Despite the robust numerical evaluation provided, this study is not without limitations. Specifically, visual 

interpretability tools, such as Grad-CAM heatmaps or feature visualizations, were not implemented in the 

current pipeline. While the confusion matrices and metric gaps offer a proxy for understanding model 

behavior, future work will integrate these visualization techniques to more precisely localize the diagnostic 

features the CNN prioritizes across different medical modalities. 

Conclusion 

This study conducted a comparative evaluation of CNN performance across multiple medical imaging 

modalities, including X-rays, CT, and MRI. The results indicate that CNNs perform best on high-contrast 

images with clearly distinguishable features, whereas high variability and subtle inter-class differences 

limit performance. Dataset characteristics appear to influence outcomes more than imaging modality alone. 

These findings underscore both the potential and the limitations of CNNs, emphasizing that performance 

depends heavily on image quality and feature representation. Further research on advanced architectures, 

transfer learning, and dataset expansion will be important for improving model performance and future 

studies on potential clinical applications. 

http://www.aijfr.com/


 

Advanced International Journal for Research (AIJFR) 

E-ISSN: 3048-7641  ●  Website: www.aijfr.com  ●  Email: editor@aijfr.com 

 

AIJFR26013071 Volume 7, Issue 1 (January-February 2026) 12 

 

Acknowledgements 

All student authors contributed equally under the supervision of Dr. Soo Min Oh. The authors are listed 

in alphabetical order by their last names. The authors would like to thank Dr. Oh for valuable guidance 

and feedback during the preparation of this work. 

Data Availability 

The data supporting this study are publicly available in the Kaggle dataset, accessible at the addresses 

https://www.kaggle.com/datasets/imtkaggleteam/dental-radiography (Dental), 

https://www.kaggle.com/datasets/pkdarabi/bone-fracture-detection-computer-vision-project (Bone 

Fracture), https://www.kaggle.com/datasets/ozguraslank/brain-stroke-ct-dataset/data (Brain Stroke), 

https://www.kaggle.com/datasets/aryansinghal10/alzheimers-multiclass-dataset-equal-and-

augmented/data (Alzheimer’s). 

No new data were generated for this study. 

Code Availability Statement 

The codes developed in this study are available from the corresponding author upon reasonable request. 

Ethics approval and consent to participate 

This study did not involve any human or animal subjects. 

Declaration of conflict of interest 

The authors declare that there are no conflicts of interest regarding the publication of this article. 

CRediT authorship contribution statement  

Lauren Choi: Investigation, Software, Writing - Original Draft, Writing - Review & Editing, 

Visualization, Project administration. Sydney Kim: Investigation, Writing - Original Draft, Writing - 

Review & Editing. Jimin Park: Investigation, Writing - Original Draft, Visualization. Justin Park: 

Investigation, Software, Writing - Review & Editing, Visualization. Youngjoon Ryu: Investigation, 

Writing - Original Draft. 

References 

1. Krupinski EA, Berbaum KS, Caldwell RT, Schartz KM, Kim J. Long Radiology Workdays Reduce 

Detection and Accommodation Accuracy. Journal of the American College of Radiology. 2010 

Sep;7(9):698–704. 

http://www.aijfr.com/
https://www.kaggle.com/datasets/imtkaggleteam/dental-radiography
https://www.kaggle.com/datasets/pkdarabi/bone-fracture-detection-computer-vision-project
https://www.kaggle.com/datasets/ozguraslank/brain-stroke-ct-dataset/data
https://www.kaggle.com/datasets/aryansinghal10/alzheimers-multiclass-dataset-equal-and-augmented/data
https://www.kaggle.com/datasets/aryansinghal10/alzheimers-multiclass-dataset-equal-and-augmented/data


 

Advanced International Journal for Research (AIJFR) 

E-ISSN: 3048-7641  ●  Website: www.aijfr.com  ●  Email: editor@aijfr.com 

 

AIJFR26013071 Volume 7, Issue 1 (January-February 2026) 13 

 

2. Ahn Y, Hong GS, Park KJ, Lee CW, Lee JH, Kim SO. Impact of diagnostic errors on adverse 

outcomes: learning from emergency department revisits with repeat CT or MRI. Insights into 

Imaging. 2021 Nov 3;12(1). 

3. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep 

learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 

[Internet]. 2021 Mar 31;8(1):1–74. Available from: 

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8 

4. He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual 

recognition. Comput Vis ECCV. 2014;346–61. 

5. Pimrada P, Natamon C, Prakobkiat H. A comparison of artificial intelligence versus radiologists 

in the diagnosis of thyroid nodules using ultrasonography: a systematic review and meta-analysis. 

Sci Rep. 2022 Jun 29;279(11):5363–73. 

6. Chatzipanagiotou OP, Loukas C, Vailas M, Machairas N, Kykalos S, Charalampopoulos G, et al. 

Artificial intelligence in hepatocellular carcinoma diagnosis: a comprehensive review of current 

literature. J Gastroenterol Hepatol. 2024 Jun 23. 

7. Bhatt D, Patel C, Talsania H, Patel J, Vaghela R, Pandya S, et al. CNN variants for computer vision: 

history, architecture, application, challenges and future scope. Electronics. 2021 Oct 

11;10(20):2470. 

8. Abadia AF, Yacoub B, Stringer N, Snoddy M, Kocher M, Schoepf UJ, et al. Diagnostic accuracy 

and performance of artificial intelligence in detecting lung nodules in patients with complex lung 

disease: a noninferiority study. J Thorac Imaging [Internet]. 2022 May 1;37(3):154–61. Available 

from: https://pubmed.ncbi.nlm.nih.gov/34387227/ 

9. Roest C, Fransen SJ, Kwee TC, Yakar D. Comparative performance of deep learning and 

radiologists for the diagnosis and localization of clinically significant prostate cancer at MRI: a 

systematic review. Life (Basel). 2022 Sep 26;12(10):1490. 

10. Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep 

convolutional neural networks. Artif Intell Rev. 2020 Apr 21;53.  

11. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for Simplicity: The All 

Convolutional Net. arXiv:14126806 [Internet]. 2015 Apr 13; Available from: 

https://arxiv.org/abs/1412.6806  

12. Bock S, Goppold J, Weiß M. An improvement of the convergence proof of the ADAM-Optimizer. 

arXiv:180410587 [Internet]. 2018 Apr 27; Available from: https://arxiv.org/abs/1804.10587 

13. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization 

performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional 

study. Sheikh A, editor. PLOS Medicine [Internet]. 2018 Nov 6;15(11):e1002683. Available from: 

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683 

14. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A Survey on Deep 

Learning in Medical Image Analysis. Medical Image Analysis. 2017 Dec;42(1):60–88. 

15. Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W. ImageNet-trained 

CNNs are biased towards texture; increasing shape bias improves accuracy and robustness 

[Internet]. Openreview.net. 2019 [cited 2025 Nov 24]. Available from: 

https://openreview.net/forum?id=Bygh9j09KX&trk=public_post_comment-text 

http://www.aijfr.com/
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8?utm_source=chatgpt.com
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8?utm_source=chatgpt.com
https://pubmed.ncbi.nlm.nih.gov/34387227/
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1804.10587
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683


 

Advanced International Journal for Research (AIJFR) 

E-ISSN: 3048-7641  ●  Website: www.aijfr.com  ●  Email: editor@aijfr.com 

 

AIJFR26013071 Volume 7, Issue 1 (January-February 2026) 14 

 

16. Zhu G, Chen H, Jiang B, Chen F, Xie Y, Wintermark M. Application of Deep Learning to Ischemic 

and Hemorrhagic Stroke Computed Tomography and Magnetic Resonance Imaging. Seminars in 

Ultrasound, CT and MRI [Internet]. 2022 Apr 1 [cited 2022 Nov 14];43(2):147–52. Available from: 

https://www.sciencedirect.com/science/article/pii/S0887217122000166 

17. Jain R, Jain N, Aggarwal A, Hemanth DJ. Convolutional neural network based Alzheimer’s 

disease classification from magnetic resonance brain images. Cognitive Systems Research 

[Internet]. 2019 Jan [cited 2019 Apr 17]; Available from: 

https://www.sciencedirect.com/science/article/pii/S1389041718309562 

Tables and Figures 

Table 1. Overview of the datasets. 

Dataset Modality # Images 

Used 

# 

Classes 

Class Indices/Names 

Dental X-ray 4652 4 [0: Cavity, 1: Fillings, 2: Impacted Tooth, 3: Implant] 

Bone 

Fracture 

X-ray  2060 6 [0: Elbow positive, 1: Fingers positive, 2: Forearm 

fracture, 3: Humerus, 4: Shoulder fracture, 5: Wrist 

positive] 

Brain Stroke CT 6650  3 [0: Bleeding, 1: Ischemia, 2: Normal] 

Alzheimer’s MRI 12000 4 [0: MildDemented, 1: ModerateDemented, 2: 

NonDemented, 3: VeryMildDemented] 

 
Fig 1. CNN model architecture. The model consists of three convolutional blocks (Conv2D with ReLU 

activation followed by MaxPooling), a flattening layer, and two dense layers with dropout regularization. 

The final output layer utilizes softmax activation for multi-class classification. Each square in the feature 

map represents 16 filters. 

 

 

 

http://www.aijfr.com/


 

Advanced International Journal for Research (AIJFR) 

E-ISSN: 3048-7641  ●  Website: www.aijfr.com  ●  Email: editor@aijfr.com 

 

AIJFR26013071 Volume 7, Issue 1 (January-February 2026) 15 

 

Table 2. Training hyperparameters and configurations used across all experiments 

Parameter Value 

Batch size 64 (32 for Bone Fracture dataset) 

Early stopping Yes (patience = 5, monitor = ‘val_loss’) 

Learning rate 110-4 

Learning rate scheduling Not used 

Loss function Categorical cross-entropy 

Maximum epochs 100 

Optimizer Adam 

 

Table 3. Evaluation results reported as the Mean ± Range calculated from two independent realizations. 

The best performance for each metric is highlighted in bold. 

Dataset Evaluation metrics 

Accuracy Precision Recall F1-score Specificity AUC 

Dental 0.8439 ± 

0.0000 

0.8325 ± 

0.0000 

0.8439 ± 

0.0000 

0.8307 ± 

0.0000 

0.8536 ± 

0.0000 

0.9700 ± 

0.0000 

Bone 

Fracture 

0.7647 ± 

0.0929 

0.8340 ± 

0.1653  

0.7591 ± 

0.0818 

0.7892 ± 

0.1303 

0.9390 ± 

0.0062 

0.9350 ± 

0.0100 

Brain Stroke 0.9335 ± 

0.0203 

0.9335 ± 

0.0210 

0.9335 ± 

0.0203 

0.9325 ± 

0.0204 

0.9227 ± 

0.0342 

0.9900 ± 

0.0000 

Alzheimer’s 0.7649 ± 

0.0287 

0.7682 ± 

0.0202 

0.7649 ± 

0.0287 

0.7623 ± 

0.0246 

0.9216 ± 

0.0096 

0.9400 ± 

0.0200 
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Fig 2. Training and validation accuracy (top) and loss (bottom) over epochs for the datasets:  (a) Dental, 

(b) Bone Fracture, (c) Brain Stroke, and (d) Alzheimer’s. 

 

 
Fig 3. Confusion matrices for the datasets:  (a) Dental, (b) Bone Fracture, (c) Brain Stroke, and (d) 

Alzheimer’s. 

 

Fig 4. ROC curves for the datasets: (a) Dental, (b) Bone Fracture, (c) Brain Stroke, and (d) Alzheimer’s. 
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