

Comprehensive Review On Antibiotic Resistance Mechanisms and Case Based Analysis

**Ms. Neha Swati Dhomase¹, Ms. Anjali Firke², Mr. Sai Mulgi³,
Dr. Kiran Sambhaji Paithankar⁴**

^{1,2,3}Research student, Jaihind Educational Institute.

⁴Principal, Physics, Jaihind Educational Institute.

Abstract

Antimicrobial Resistance (AMR) is emerging threat to health and has become a worldwide crisis. It is surpassing the research development and making difficult to treat many diseases. Repeated use of same antibiotics had made bacteria tolerant to these drugs and making it ineffective to treat. Modern methods have emerged to counteract this problem which includes β -lactamase inhibitor, Antibiotics combinations, Phage therapy etc. This article has an overview of superbugs its current scenario its Mechanism of action and various methods in use to eradicate this problem.

Keywords: Antimicrobial Resistance (AMR), Superbugs, β -Lactamase Inhibitors, Phage Therapy.

1. Introduction

Superbugs are newly evolved bacteria resistant to various antibiotics. It is among the 3 greatest threats to human health ^[1]. According to Centers for disease control and prevention, USA faces 2.8 million antibiotic-resistant infection each year with a mortality of 35,000 people ^[2]. Antimicrobial resistance (AMR) is directly proportional to economic losses and inversely proportional to surgical treatments success.

PRECEDING AND CONTEMPORARY LANDSCAPE

The first resistant bug in 1943 against Penicillin was *Staphylococcus aureus*. In further years *Streptococcus pneumoniae* and *Enterococcus faecium* was found resistant against Penicillin.

Earlier, pharmaceutical companies combined different antibiotics in a single pill and encouraged the doctors to prescribe them due to marketable incentives. Mainly, the drugs for treating cold were pushed to ingest because they surely kill viruses of cold. The development of new antibiotics did not cause a positive change but caused serious side effects. According to Dr. Scott Podolsky, a physician at Massachusetts General Hospital and an historian of medicine at Harvard Medical School, chloramphenicol led to increased risk for deadly aplastic anemia among people. Due to this, FDA followed strict regulations for antibiotics.^[3]

The concept of ‘superbugs’ in relation to resistance genes and bacterial strains was highlighted in the 1960s. According to the World Health Organization (WHO), *Pseudomonas aeruginosa* is the second most dangerous drug-resistant superbug^[15]. It is the source of contamination in various eyedrops brands

which have led to serious complications like eye infection, vision loss, and even death. FDA's WEAC (Winchester Engineering and Analytical Center) scientists in New York lab have used Cetrimide as an antibiotic and more than 10 tests on eyedrops have confirmed the presence of *P. aeruginosa* in 2012^[4]. Since then, FDA has approved various new antimicrobials and new treatments and also converted Sirturo (bedaquiline) against Multi Drug Resistant- Tuberculosis (MDR- TB) in 2024. In July 2024, FDA committed the molecular based assay to detect *C. auris* DNA from skin and ensure the development and expansion of tests for the upsurging pathogens. According to the National Antimicrobial Resistance Monitoring System (NARMS), new opportunities and monitoring will be included in 2026-30 Strategic management to fight against Antimicrobial Resistance (AMR).

Study/Statistic	Details
MRSA Skin Infections (US)^[5]	80,000 infections, 11,000 deaths
The Lancet Study (1990-2021)^[6]	>1 million deaths annually due to AMR
AMR Death Rate in Children (<5 years)^[6]	Decreased by 50%
AMR Death Rate in Older Age Groups^[6]	Increased
Superbug Death Rates (2021)^[6]	Notably decreased
Projected AMR Deaths Averted^[6]	11.1 million (with gram-negative drug pipeline)
Potential Solutions^[7]	Nanoparticle-based formulations, antimicrobial polymeric biomaterials, vaccines
Projected Mortality by 2050 (The Lancet Study)^[6]	~92 million deaths

TABLE-1:-STATISTICS OF AMR

COUNTRY	DEATHS PER ANNUM ^[15]
US	Around 35000 (2019)
INDIA	56,524 (neonatal sepsis)
WORLDWIDE	1.27 million (2019)

TABLE-2:-DEATHS DUE TO AMR

CASE STUDIES: -

Case Study 1: Diabetic Foot Ulcer with Multidrug-Resistant Infection

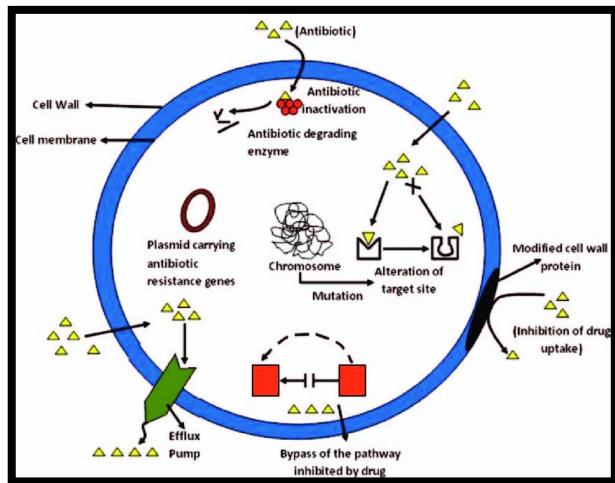
An 82-year-old male patient presented with a neuro-ischemic ulcer complicated by infection and osteomyelitis^[8]. The patient had a 13-year history of untreated diabetes and was a chronic smoker and alcoholic for over a decade. Coming from a low socioeconomic background with limited health literacy, the patient had a history of irrational antibiotic use and frequent over-the-counter drug consumption. Microbiological analysis revealed a polymicrobial infection involving multidrug-resistant strains of *Staphylococcus aureus*, *Acinetobacter baumannii*, and *Acinetobacter lwoffii*. The patient was administered intravenous Meropenem at 500 mg every 12 hours along with intravenous Vancomycin at 1 g every 12 hours for a period of nine days. Despite this aggressive treatment regimen, the infection progressed, and on day 25, the patient was transferred to another healthcare facility where lower

extremity amputation was recommended. This case highlights several critical observations: diabetic patients face a significantly elevated risk of developing foot ulcers, with prevalence rates ranging from 12 to 25 percent, and these ulcers are particularly susceptible to antimicrobial resistance. Additionally, *Staphylococcus aureus* can persist as a carrier organism for extended periods and spread within the general population. The case underscores that improper antibiotic usage substantially increases the risk of developing multidrug-resistant infections.

The findings emphasize the urgent need for empirical therapy protocols in settings where advanced microbiological laboratory facilities are unavailable, and highlight the importance of conducting periodic antimicrobial resistance surveys to guide optimal treatment strategies^[8]

Case Study 2: Road Accident with Secondary Multidrug-Resistant Wound Infection

A 48-year-old male patient sustained a fracture of the shaft of the left leg bones following a road traffic accident^[9]. The open wound subsequently became colonized by resistant organisms, specifically *Klebsiella* and *Staphylococcus* species, which demonstrated multidrug resistance to ampicillin and amoxicillin. Initial treatment consisted of intramuscular Cefotaxime at 1 gram and oral Amoxicillin. However, due to lack of clinical improvement and persistent infection, the antibiotic regimen was modified to intravenous Cephalexin, intravenous Amikacin, and oral Norfloxacin. This case illustrates several important clinical lessons: open traumatic wounds require meticulous observation and prompt intervention to prevent colonization by resistant pathogens. The development of multidrug resistance in this setting reflects the consequences of improper initial antibiotic selection and inadequate wound management protocols. The case demonstrates that nosocomial infections remain a pressing global health concern, particularly in trauma settings where wound contamination is common.


The findings reinforce the necessity for active surveillance systems, implementation of molecular diagnostic techniques, and regular antimicrobial resistance surveys to combat the emergence and spread of multidrug-resistant organisms. Furthermore, the case emphasizes that establishing proper antibiotic regimens from the outset, based on local resistance patterns and evidence-based guidelines, is crucial to prevent the development of resistance and improve patient outcomes^[9]

MECHANISM OF ACTION^[10]

Mechanism	Description	Example
Inhibiting bacterial cell wall formation	<i>By inhibiting the production of peptidoglycan—a critical structural component of bacterial cell walls—antibiotics impair microbial development and proliferation.</i>	β-lactams like penicillin bind to PBPs; glycopeptides like vancomycin bind peptidoglycan precursors.
Disrupting bacterial cell membranes	Alter membrane permeability, leading to leakage and death.	<i>Polymyxins bind to lipopolysaccharide molecules in bacterial membranes, selectively disrupting Gram-negative pathogens such as</i>

		<i>Escherichia coli and Acinetobacter baumannii</i>
Inhibiting DNA replication	Target enzymes critical for DNA replication, halting bacterial division.	Quinolones inhibit topoisomerase enzymes.
Inhibiting RNA synthesis	Block RNA polymerase, interfering with bacterial transcription processes.	Rifamycins target bacterial RNA polymerase.
Inhibiting protein synthesis	Prevent bacterial growth by blocking protein production at various stages.	Macrolides, lincosamides, aminoglycosides, tetracyclines, and oxazolidinones target different steps of translation.
Hindering metabolic processes	Disrupt essential bacterial metabolic pathways, impairing survival.	Specific metabolic inhibitors target bacterial-specific enzymes and pathways.

Mechanism of Resistance	Description	Example
Dormancy	Bacteria enter a low-metabolism state to evade antibiotics targeting active cells.	Seen broadly across many bacterial types.
Reduced permeability	Alteration of outer membrane components prevents antibiotic entry.	<i>Observed in Gram-negative bacteria through modified outer membrane proteins or lipopolysaccharides.</i>
Efflux pumps	Actively expel antibiotics before they reach their target.	<i>These resistance mechanisms are found in both Gram-positive and Gram-negative bacterial species, acting against antibiotics such as macrolides, tetracyclines, quinolones, and other antimicrobial agents</i>
Target modification	Genetic changes to target sites reduce drug binding efficacy.	Mutations in PBPs (β -lactam resistance), topoisomerases (quinolone resistance).
Enzyme production	Production of enzymes that degrade or modify antibiotics.	β -lactamases break down β -lactams; enzyme modifications lead to aminoglycoside resistance (e.g., MRSA).

Figure1:-Mechanism of antibiotic resistance^[11]

TREATMENT^[12]

The emerging present day threats can be controlled by taking preventive measures to minimize their development. The most effective methods through which we can overcome are:-

1. β -Lactamase Inhibitors

- Counteract enzymes that degrade β -lactam antibiotics (e.g., penicillins, cephalosporins, carbapenems).

2. Phage Therapy

- Utilizes bacteriophages to target and lyse specific bacterial strains, bypassing traditional resistance mechanisms.

3. CRISPR-Based Gene Editing

- Precision tools to disable resistance genes or enhance bacterial susceptibility to antibiotics.

4. Antimicrobial Peptides (AMPs)

- Disrupt bacterial membranes or interfere with intracellular processes, offering broad-spectrum activity.

β -lactam antibiotics are neutralized through enzymatic cleavage of the β -lactam ring by β -lactamases. These enzymes are classified into four groups (A, B, C, D) based on structural and functional properties:


- **Class A, C, D:** Serine-dependent hydrolases that hydrolyze β -lactam rings via covalent intermediates.
- **Class B:** Metallo- β -lactamases requiring zinc ions for catalytic activity, targeting carbapenems and other β -lactams.

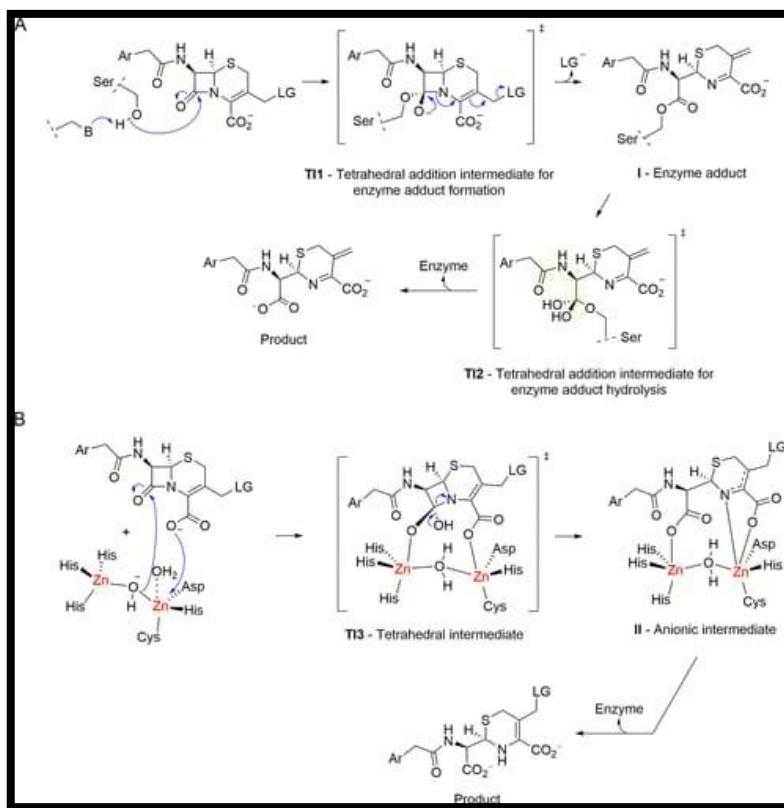

Ambler class	substrates	most relevant examples
A (serine- β -lactamases)	Penicillins	Enzymes produced by Gram-positive bacterial species that hydrolyze penicillin antibiotics.
	Narrow-spectrum: Penicillins, basic cephalosporins	TEM-1, TEM-2, SHV-1
	Expanded-spectrum: Penicillins, broad-spectrum cephalosporins	SHV-2, TEM-10, CTX-M, GES-1
	Penicillin-specific variants	TEM-30, SHV-72
	Carbenicillin-active	PSE
	Carbapenem-hydrolyzing	KPC, SME, NMC-A, GES-2
B (metallo- β -lactamases, including carbapenems, with the exception of monobactams)	β -Lactams, including carbapenems, with the exception of monobactams	IMP, VIM, NDM
C (serine cephalosporinases)	Cephalosporins	AmpC, CMY, ACT-1, DHA
D (serine oxacillinases)	Penicillins and cloxacillin; some of them hydrolyze cephalosporins and/or carbapenems.	OXA-1/30, OXA-10, OXA-23, OXA-24/40, OXA-48

TABLE-3:-Classification of β -Lactamase enzyme^[13]

Bacteriophages are viruses that selectively infect particular bacterial species. The main advantage is it overcomes the drawbacks of broad-spectrum antibiotics by recognizing specific receptors, type of bacterial strain and start off bacterial destruction process. The overall process includes^[12]

Bacteriophages possess the unique ability to infiltrate and disrupt bacterial biofilms, significantly reducing microbial populations while simultaneously sensitizing surviving bacteria to conventional antibiotics. This approach offers a promising alternative for treating infections caused by multidrug-resistant (MDR) pathogens, particularly when traditional antibiotics prove ineffective. Clinical applications include combating life-threatening conditions such as sepsis and urinary tract infections (UTIs) caused by *Escherichia coli*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa*.

Figure2:-Figure 2: Enzymatic degradation of cephalosporins by two β -lactamase classes:

- Panel A: Serine- β -lactamases catalyze hydrolysis via a covalent acyl-enzyme intermediate.
- Panel B: Metallo- β -lactamases utilize zinc ions to hydrolyze the β -lactam ring without forming covalent bonds.^[13]

CASE STUDY: -

Case Study 3: Fatal Carbapenem-Resistant *Klebsiella pneumoniae* Infection

A comprehensive study conducted by Huang and colleagues at Taipei Veterans General Hospital examined an 83-year-old female patient who developed an intra-abdominal abscess infected with a carbapenemase-producing strain of *Klebsiella pneumoniae*^[14]. The research team identified 63 distinct strains of *Klebsiella pneumoniae* within the hospital environment during their investigation. Genetic analysis of the patient's isolate revealed the presence of *rmpA* and *rmpA2* virulence genes, which are associated with hypervirulent phenotypes. The abscess was initially drained using a catheter placed under percutaneous ultrasonography guidance. Further investigation identified the infection source as a fistula between the spleen and the splenic flexure of the colon. Initial pus culture demonstrated an extended-spectrum beta-lactamase (ESBL)-phenotype *Klebsiella pneumoniae* along with *Enterococcus faecium* and *Escherichia coli*. The patient received empirical treatment with Tigecycline and Ceftazidime; however, clinical deterioration continued. Ten days into the treatment course, culture results confirmed the presence of a carbapenem-resistant *Klebsiella pneumoniae* strain demonstrating resistance to imipenem. Although the organism remained susceptible to amikacin, it exhibited resistance to fluoroquinolones and all cephalosporins tested. Despite modification of therapy to include amikacin,

the patient developed septic shock six days later and succumbed to the infection. The isolated strain was classified as extensively drug-resistant (XDR), with susceptibility status to tigecycline and colistin determined only through minimum inhibitory concentration (MIC) testing^[14]. Research conducted by Morita and colleagues in 2016 has suggested that Berberine, a plant-derived alkaloid, demonstrates effectiveness against multidrug-resistant pathogens when administered at lower therapeutic doses. Studies have shown that Berberine can reduce *Pseudomonas aeruginosa* resistance to aminoglycosides and significantly decrease the minimum inhibitory concentrations of aminoglycosides against *Achromobacter xylosoxidans* and *Burkholderia cepacia*. Additionally, Berberine has been shown to enhance the antimicrobial activity of amikacin and piperacillin against multidrug-resistant *Pseudomonas aeruginosa* strains.

These findings suggest that Berberine-based combination therapy (BBH) with antimicrobial resistance represents a promising therapeutic adjuvant strategy to re-sensitize multidrug-resistant and extensively drug-resistant pathogens to conventional antibiotics, potentially offering new hope in cases similar to this fatal infection^[14].

CONCLUSION

Antimicrobial resistance (AMR) has emerged as a critical global health crisis, driven by the widespread misuse of antibiotics and the lack of innovative antimicrobial drug development. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) pathogens, often referred to as superbugs, have become a major driver of global health crises, significantly escalating rates of illness and mortality worldwide. The limitations of conventional antibiotics necessitate the development of advanced therapeutic strategies, including β -lactamase inhibitors, bacteriophage therapy, CRISPR-based genetic engineering, and antimicrobial peptides (AMPs). Microbes such as *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, and MRSA use resistance mechanisms, such as efflux pumps, target site modifications, and production of enzymes, to make normal treatments ineffective. Programs such as NARMS and strategic antimicrobial stewardship policies play key roles in resistance mitigation. Nanoparticle-mediated drug delivery, bacteriophage therapy, and berberine-derived adjuvants are shown to exhibit high efficacy against MDR microbes. Genomic-based rapid diagnostic tests and molecular assays are required for early diagnosis and intervention. Public health initiatives must focus on restricting over-the-counter antibiotic sales and implementing stringent prescription regulations^[15]. Collaborative research efforts are required to develop next-generation antimicrobials. Without immediate intervention, AMR threatens to render common infections untreatable, leading to a potential post-antibiotic era.

REFERENCES: -

1. Schneider, Elena K., et al. "Antibiotic–Non-Antibiotic Combinations for Combating Extremely Drug-Resistant Gram-Negative 'Superbugs.'" *Essays in Biochemistry*, edited by Henrietta Venter, vol. 61, no. 1, Mar. 2017, pp. 115–25. DOI.org (Crossref), <https://doi.org/10.1042/EBC20160058>.
2. Commissioner, Office of the. "Antimicrobial Resistance." FDA, Mar. 2025. [www.fda.gov](http://www.fda.gov/emergency-preparedness-and-response/mcm-issues/antimicrobial-resistance), <https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/antimicrobial-resistance>

3. Zimmer, Carl. "The Surprising History of the War on Superbugs — and What It Means for the World Today." STAT, 12 Sept. 2016, <https://www.statnews.com/2016/09/12/superbug-antibiotic-resistance-history/>.
4. Affairs, Office of Regulatory. "The Hunt for a Blinding Bacterium." FDA, Mar. 2024. [www.fda.gov,https://www.fda.gov/about-fda/regulatory-news-stories-and-features/hunt-blinding-bacterium](https://www.fda.gov/about-fda/regulatory-news-stories-and-features/hunt-blinding-bacterium).
5. "Stop the Spread of Superbugs." NIH News in Health, <https://newsinhealth.nih.gov/2014/02/stop-spread-superbugs>. Accessed 1 Apr. 2025.
6. Naghavi, Mohsen, et al. "Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050." *The Lancet*, vol. 404, no. 10459, Sept. 2024, pp. 1199–226. DOI.org (Crossref), [https://doi.org/10.1016/S0140-6736\(24\)01867-1](https://doi.org/10.1016/S0140-6736(24)01867-1).
7. Painuli, Sakshi, et al. "Superbugs or Multidrug Resistant Microbes: A New Threat to the Society." *Health Science Reports*, vol. 6, no. 8, Aug. 2023, p. e1480. PubMed Central, <https://doi.org/10.1002/hsr2.1480>.
8. Hart, C. A., and S. Kariuki. "Antimicrobial Resistance in Developing Countries." *BMJ*, vol. 317, no. 7159, Sept. 1998, pp. 647–50. DOI.org (Crossref), <https://doi.org/10.1136/bmj.317.7159.647>.
9. K Rajan, Asha & Jeyamani, s. Vedha & P, Balaji. (2018). A Case Study on Multi Drug Resistant Infection. 2018. 1-4. Research gate
10. Yao, J.; Zou, P.; Cui, Y.; Quan, L.; Gao, C.; Li, Z.; Gong, W.; Yang, M. Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems. *Pharmaceutics* **2023**, 15, 1188. <https://doi.org/10.3390/pharmaceutics15041188>
11. Singh, Rajni, et al. "The Role of Nanotechnology in Combating Multi-Drug Resistant Bacteria." *Journal of Nanoscience and Nanotechnology*, vol. 14, no. 7, July 2014, pp. 4745–56. DOI.org (Crossref), <https://doi.org/10.1166/jnn.2014.9527>.
12. Olawade, David B., et al. "Phage Therapy: A Targeted Approach to Overcoming Antibiotic Resistance." *Microbial Pathogenesis*, vol. 197, Dec. 2024, p. 107088. ScienceDirect, <https://doi.org/10.1016/j.micpath.2024.107088>.
13. González-Bello, Concepción, et al. "β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs." *Journal of Medicinal Chemistry*, vol. 63, no. 5, Mar. 2020, pp. 1859–81. DOI.org (Crossref), <https://doi.org/10.1021/acs.jmedchem.9b01279>.
14. Huang, Yen-Hua, et al. "Emergence of an XDR and Carbapenemase-Producing Hypervirulent *Klebsiella pneumoniae* Strain in Taiwan." *Journal of Antimicrobial Chemotherapy*, vol. 73, no. 8, Aug. 2018, pp. 2039–46. DOI.org (Crossref), <https://doi.org/10.1093/jac/dky164>.
15. <https://www.who.int>