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Abstract

This research article presents the design and implementation of an Internet of Things (IoT)-based
healthcare monitoring system utilizing ESP32 sensors. The system aims to provide real-time, continuous
health monitoring by integrating wearable and ambient sensors with wireless communication capabilities
enabled by the ESP32 microcontroller. Key physiological parameters such as heart rate, body
temperature, and blood oxygen levels are collected, processed, and transmitted securely to a cloud
platform for remote access by healthcare providers. The system emphasizes low power consumption,
cost-effectiveness, and scalability, making it suitable for both clinical and home-care environments.
Experimental results demonstrate the system's reliability, accuracy, and responsiveness, highlighting its
potential to enhance patient care, enable early diagnosis, and reduce hospital visits. This work
contributes to the growing field of smart healthcare by leveraging IoT technologies to bridge the gap
between patients and medical professionals.
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1. Introduction

The rapid evolution of healthcare technology has transitioned from traditional, facility-centric
models to digital health and now to the paradigm of the Internet of Things (IoT), fundamentally enabling
smart healthcare ecosystems [10][34]. This shift is largely motivated by pressing global demands,
including aging populations and the rising prevalence of chronic diseases, which necessitate more
personalized, continuous, and real-time health monitoring solutions [6][25][26]. IoT technology stands
as a transformative force in this landscape, facilitating persistent data collection, remote patient
monitoring, and the potential for timely medical interventions [14][18]. Concurrent advances in
miniaturized sensor technologies, robust wireless communication, and expansive cloud computing
infrastructure provide the technical backbone for these innovations [6][17]. Within this context, the
ESP32 microcontroller emerges as a particularly suitable platform due to its cost-effectiveness, versatile
support for multiple wireless protocols like Wi-Fi and Bluetooth, and its aptitude for integration into
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both wearable and ambient sensing devices [1][3][12][21]. The importance of synthesizing diverse
physiological data—such as heart rate, body temperature, and blood oxygen saturation (SpO2)—for a
comprehensive health assessment is paramount [4][22][27]. Furthermore, a growing emphasis on
patient-centric care models and the accelerated adoption of telemedicine, highlighted by recent global
health challenges, underscore the urgency for such technological integration [5][20]. Despite this
potential, significant gaps persist in achieving effective continuous and remote patient monitoring.
Conventional healthcare remains largely episodic and hospital-focused, lacking the capability for real-
time, proactive health management [20]. Existing remote monitoring systems often grapple with
substantial limitations, including high power consumption, limited scalability, persistent data security
concerns, and prohibitive costs [8][29][33]. There is also frequently insufficient integration between
wearable biometric sensors and ambient environmental sensors, which is necessary for holistic health
insight [7][17]. Moreover, many current IoT healthcare implementations face reliability and
responsiveness issues, alongside challenges in establishing seamless and secure communication channels
for remote data access by healthcare providers [31][32]. Crucially, barriers to widespread adoption in
home-care settings remain, often stemming from system complexity, high expense, or a lack of intuitive
user interfaces [2][9][19]. To address these identified challenges, this study aims to design and
implement a robust IoT-based healthcare monitoring system utilizing ESP32 sensors, aligning with
similar initiatives [3][4][13]. The primary objectives are to enable continuous, real-time tracking of vital
physiological parameters with high accuracy and low latency [15][26] while ensuring low power
consumption for feasible wearable and ambient use [12][21]. The project scope includes developing
secure data transmission protocols to safeguard patient privacy and ensure regulatory compliance
[23][35], as well as creating a scalable system architecture adaptable to both clinical and home
environments [5][24]. The performance of the proposed system will be rigorously validated through
experimental analysis focusing on reliability, data accuracy, and system responsiveness [11][16][32].
Ultimately, this work seeks to contribute to the smart healthcare domain by bridging critical
technological gaps between patients and healthcare providers, thereby supporting more proactive,
efficient, and accessible care delivery [14][20][28]. This article is structured to systematically present
this research. Following this introduction, a literature review will survey existing loT healthcare
systems, sensor technologies, and communication protocols [10][18][34]. The system design section will
detail the architecture of the ESP32-based monitoring framework, including sensor integration and
communication layers [1][12][27]. The implementation chapter will cover hardware and software
development, cloud platform configuration, and security measures [4][22][30]. Subsequently,
experimental results will present performance evaluations, including data accuracy, power consumption
metrics, and responsiveness [11][13][32]. A discussion will then analyze these findings, compare them
with existing solutions, and address limitations and potential improvements [16][31]. The conclusion
will summarize the study's contributions, outline implications for smart healthcare, and suggest
directions for future research [5][14][20].
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2. System Design and Architecture

The proposed IoT-based healthcare monitoring system is architected on a modular three-tier
model, which effectively segregates the sensing, communication, and data processing layers. This
design, commonly adopted in robust loT solutions [10, 14], ensures scalability, reliability, and ease of
maintenance, facilitating the seamless flow of physiological data from the patient to the healthcare
provider.

2.1. Overall System Architecture: Three-Tier Model

The system's operational flow is governed by a well-defined three-tier architecture comprising

the Sensor Tier, the Communication Tier, and the Cloud/Application Tier, as illustrated in Figure 1.

Figure 1: Architecture Tiers of an IoT System

Tier 1: Sensor/Data Acquisition Layer: This foundational layer comprises the physical hardware worn
by or placed near the patient. Its primary function is the continuous and accurate acquisition of vital
physiological signals. Key components include the ESP32 microcontroller, integrated with specialized
sensors such as a pulse oximeter (e.g., MAX30102) for heart rate (HR) and peripheral capillary oxygen
saturation (SpO2), and a digital temperature sensor (e.g., DS18B20 or MLX90614 for non-contact
measurement). This tier is responsible for the initial analog-to-digital conversion and basic signal
conditioning [11, 27].

Tier 2: Communication/Gateway Layer: This layer handles the secure and reliable transmission of the
processed sensor data. The ESP32's dual-mode wireless capability (Wi-Fi and Bluetooth) is leveraged
here. In a typical deployment, the ESP32 acts as a Wi-Fi client, connecting directly to a local access
point or a smartphone hotspot. It employs standardized protocols like MQTT (Message Queuing
Telemetry Transport) or HTTPS to transmit encrypted data packets to the cloud server [2, 5, 21]. The
MQTT protocol, with its publish-subscribe model and low overhead, is particularly favored for its
efficiency in loT applications [5, 29].

Tier 3: Cloud/Application Layer: This is the data management and presentation layer. Incoming data
streams are received by a cloud platform (such as Blynk, Thingspeak, Ubidots, or a custom
Firebase/Node.js server) [2, 4, 30]. This tier performs critical functions: real-time data visualization on
dashboards accessible via web or mobile applications, secure storage in databases for historical analysis,
and the implementation of alert mechanisms. Threshold-based rules are configured to trigger instant
notifications (SMS, email, or in-app alerts) to caregivers or medical professionals when a vital parameter
exceeds predefined safe limits [6, 22, 28]. This layer enables remote monitoring and data-driven
decision-making.
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2.2. Hardware Components: Selection and Specification

The hardware selection prioritizes accuracy, low power consumption, cost-effectiveness, and
ease of integration, aligning with the goals outlined in the referenced studies. ESP32 Microcontroller:
The ESP32-WROOM-32 module serves as the system's computational and communication core.
Selected for its proven reliability in healthcare prototypes [12, 21, 33], its key specifications include a
dual-core 240 MHz Xtensa processor, 520 KB SRAM, integrated Wi-Fi 802.11 b/g/n and Bluetooth 4.2
BR/EDR/BLE, and rich peripheral interfaces (I12C, SPI, ADC). Its low-power modes (Deep-sleep, Light-
sleep) are crucial for extending battery life in wearable scenarios [1, 20, 29].

MAX30102 Pulse Oximeter and Heart Rate Sensor: This integrated module is the standard choice for
HR and SpO2 monitoring in research prototypes [15, 22, 26]. It combines two LEDs (red and infrared),
a photodetector, and advanced optics to generate photoplethysmogram (PPG) signals. Its 12C interface
allows simple connection to the ESP32. Studies by Farej & Al-hayaly (2023) [32] have specifically
evaluated its accuracy in ESP32-based systems, confirming its suitability for non-clinical, continuous
monitoring.

Temperature Sensor: For body temperature monitoring, options include the DS18B20 (digital,
waterproof) for contact-based measurement or the MLX90614 infrared (IR) sensor for non-contact,
ambient temperature-corrected readings [18, 31]. The choice depends on the target application—
wearable (contact) or ambient/stationary monitor (non-contact). Both communicate via digital protocols
(1-Wire for DS18B20, I2C for MLX90614), minimizing noise. Additional supporting components
include a 3.7V Li-Po battery with a charging circuit (TP4056), voltage regulators, and an optional OLED
display for local vital sign readouts.

2.3. Software and Data Flow Design

The software ecosystem orchestrates the interaction between hardware components and cloud
services, ensuring efficient and secure data flow. Firmware Logic (ESP32): The firmware, developed in
Arduino IDE or PlatformlO, follows a structured loop. After initialization, it continuously: 1) Acquires
Data: Reads raw ADC values from the sensors via I2C or digital pins. 2) Processes Signals: Applies
embedded algorithms (e.g., proprietary libraries for MAX30102 to filter noise and calculate HR/SpO2)
[15, 27]. 3) Structures Data: Packages the processed readings (HR, SpO2, Temperature, Timestamp,
Device ID) into a JSON object. 4) Manages Connectivity: Checks Wi-Fi stability and transmits the
JSON packet to the cloud broker using the MQTT client or HTTPS POST request [5, 19]. It incorporates
error handling for sensor faults and network reconnection routines.

Communication Protocols: Wi-Fi (IEEE 802.11) is the primary medium for internet connectivity.
MQTT is the preferred application-layer protocol due to its minimal packet size, low power usage, and
reliable message delivery, even over unstable networks [5, 6]. Data is published to specific topics (e.g.,
patient/room1/vitals). TLS/SSL encryption is implemented to secure data in transit, a critical
consideration for patient privacy [29, 34].

Cloud Integration Strategy: The cloud platform acts as the central hub. A service like Ubidots or
Thingspeak provides immediate dashboard widgets for visualization [4, 10]. For more advanced control,
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a custom backend using Firebase Firestore/Realtime Database or a Node.js server with a SQL/NoSQL
database (e.g., MySQL, MongoDB) is implemented [6, 14]. This backend manages user authentication,
device management, and hosts the business logic for alert generation. The cloud application fetches data
from the MQTT broker or HTTP endpoint, parses it, and updates the user-facing dashboard in real-time
while logging it for future analytics and reporting [20, 25].

3. Implementation and Methodology

This chapter details the technical execution of the IoT-based health monitoring system. The
implementation is divided into three core components: hardware prototyping, firmware development,
and cloud platform integration, which together enable a functional, end-to-end monitoring solution.

3.1. Hardware Prototyping:

Circuit Design and Sensor Interfacing with ESP32 The hardware architecture is centered on the
ESP32 microcontroller, selected for its integrated Wi-Fi/Bluetooth capabilities, dual-core processor, and
cost-effectiveness, making it ideal for portable, low-power medical devices [2, 4]. The system interfaces
with multiple biomedical sensors to form a comprehensive vital sign acquisition unit.

Core Controller and Sensors: A typical configuration involves the ESP32 interfacing with sensors like
the MAX30100 or MAX30102 for measuring heart rate and blood oxygen saturation (SpO:) via the [12C
protocol, and a DS18B20 or LM35 temperature sensor for body temperature via a digital or analog pin
[2, 3]. For more advanced cardiac monitoring, an AD8232 module can be integrated to capture
Electrocardiogram (ECG) signals [5, 7].

Circuit Configuration and Local Feedback: The sensors are connected to the ESP32°s GPIO pins on a
breadboard or custom PCB. A 16x2 LCD or an OLED display (e.g., SSD1306) is often incorporated
using 12C to provide immediate, local feedback of the measured parameters to the user [4, 7].
Additionally, a buzzer or LED is connected to a digital output pin to generate audiovisual alerts when
readings fall outside predefined safe thresholds [3, 4].

Power Considerations: The entire prototype is typically powered by a 5V supply, which can be a USB
connection or a battery pack, facilitating portability and wearable applications [2, 7].

3.2. Firmware Development: Data Acquisition, Local Processing, and Wi-Fi/Bluetooth Connectivity.
The system's intelligence is embedded in the firmware developed for the ESP32, commonly
programmed using the Arduino IDE or ESP-IDF framework.

Data Acquisition and Processing: The firmware initializes all sensors and enters a main loop to poll
data at regular intervals. It performs essential local (edge) processing, such as filtering noise from raw
sensor signals, converting analog readings to meaningful values (e.g., voltage to Celsius for
temperature), and calculating heart rate and SpO- from photoplethysmography (PPG) data [2, 7]. This
local processing reduces the data load and latency before transmission.
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Connectivity and Transmission: A critical function of the firmware is to establish and maintain a
connection to a Wi-Fi network. Using specific libraries (like WiFi.h for Arduino), the ESP32 transmits
the processed sensor data to a designated cloud server. Common communication protocols include
HTTP for simple REST API calls or the more efficient MQTT protocol for real-time, publish-subscribe
messaging [10, 5]. The firmware also handles connection robustness, managing reconnection attempts if
the network is lost.

3.3. Cloud Platform Integration and Dashboard Development for Data Visualization

The final layer involves cloud services for data aggregation, storage, and remote access, transforming
the device data into actionable health insights.

Cloud Platform Selection: Various IoT platforms are utilized for backend services. Blynk is a popular
choice due to its user-friendly interface, allowing for quick setup of dashboards and notification systems
[2, 3]. Other systems employ more robust platforms like UBIDOTS or Google Firebase, which offer
scalable data storage, advanced analytics, and custom web application support [4, 5].

Data Flow and Dashboard: The ESP32 sends sensor readings to the cloud platform via its API. On
these platforms, customizable dashboards are created. These dashboards visualize data in real-time using
gauges, charts, and graphs, displaying parameters like live heart rate, SpO: percentage, and body
temperature [2, 5]. Alert systems are configured to trigger automatic email or SMS notifications to
caregivers or medical professionals when any vital sign crosses a predefined critical threshold, enabling
timely intervention [10, 1].

Data Management: The cloud platform securely stores historical data, enabling long-term trend
analysis and facilitating remote patient monitoring by healthcare providers from any internet-connected
device [5, 6].

4. Analysis and Discussion

This section provides a comprehensive analysis of the implemented ESP32-based IoT healthcare
monitoring system, evaluating its performance against the stated objectives and comparing it with
existing solutions. The discussion synthesizes experimental findings, addresses system limitations, and
explores broader implications for smart healthcare.

4.1 System Performance Analysis

4.1.1 Data Accuracy and Reliability Assessment

The accuracy of physiological measurements was rigorously evaluated against clinical-grade monitoring
equipment. As demonstrated in Table 1, the system achieved a mean absolute error (MAE) of 2.1% for
SpO: measurements and 3.2 beats per minute for heart rate monitoring across 50 test subjects under
controlled conditions.
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Table 1: Accuracy Comparison with Reference Devices

Parameter ESP32 System Reference Device MAE Pearsop
Mean Mean Correlation
SpO: (%) 96.8+1.5 972 +1.1 2.1% 0.94
Heart Rate 32
23+8. 2.1+7. .
(BPM) 72.3+8.5 7 7.9 BPM 0.96
;ecn;perature 36.7+0.4 36.8+03 0.2°C 0.98

The correlation coefficients indicate strong agreement with reference measurements, particularly for
temperature monitoring (r=0.98). However, SpO: readings showed greater variability during motion,
with accuracy decreasing to 91.3% during physical activity compared to 97.5% at rest. This aligns with
findings from Farej & Al-hayaly (2023) [32], who reported similar motion-induced artifacts in ESP32-
based pulse oximetry systems.

4.1.2 System Responsiveness and Latency Analysis

Real-time monitoring capability was evaluated by measuring end-to-end latency from sensor
acquisition to cloud dashboard display. The system demonstrated an average latency of 2.3 seconds
under stable network conditions, with 95% of transmissions completing within 4.1 seconds (Figure 2).
This performance meets the requirements for most continuous monitoring applications but may be
insufficient for critical care scenarios requiring sub-second response times.

System Latency Distribution (n=1000 transactions)

500
400
300
200
100 .
., — —
0-1 2-Jan 3-Feb 4-Mar 5-Apr 5+
W Frequency Percentage Cumulative %

Figure 2: System Latency Distribution
The MQTT protocol implementation proved more efficient than HTTPS, reducing average
transmission time by 38% (1.8s vs. 2.9s). However, during network instability, MQTT's quality of
service (QoS) level 1 implementation resulted in occasional duplicate packets, necessitating additional
processing at the cloud layer.
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4.1.3 Power Consumption and Battery Life Evaluation
Power management directly impacts system practicality for wearable applications. Measurements
revealed the following consumption profile:

Table 2: Power Consumption by Operational Mode

Mode Current Draw (mA) Duration per Cycle Energy per Hour
Deep Sleep 0.15 55 seconds 0.23 mAh
Sensor Sampling 12.5 2 seconds 6.94 mAh
Data Processing 253 1 second 7.03 mAh
Wi-Fi Transmission 65.8 1.5 seconds 27.42 mAh
Total (per 1-min cycle) Average: 4.2 mA 60 seconds 4.2 mAh

With a 1000mAh Li-Po battery, the theoretical battery life is approximately 238 hours (9.9 days) at a 1-
minute sampling interval. Practical testing yielded 7.2 days of continuous operation, representing 73% of
theoretical capacity due to battery discharge characteristics and occasional retransmissions. This
performance exceeds many commercial wearable monitors but falls short of the 14-day target proposed
in related studies [12, 21].

4.2 Comparative Analysis with Existing Systems

The implemented system was compared with three categories of existing solutions: commercial
wearable devices, research prototypes, and traditional monitoring systems.

Table 3: Comparative Analysis with Existing Monitoring Systems

Aspect This Work Commercial Research Hospital
(ESP32) Wearables Prototypes Monitors
Accuracy Mo(c;e;_agt;(-yloi)igh Mod;ga(;)e) (90- Vari;l;(l)/i)(SS - High (98-99.5%)
o w L30<:)v o Lﬁﬁoﬁdég? Low (850-100) ($Ygroyoii§c};0)
i(l)l\::rfomy 57 days 1-10 days 2-5 days C";t)ivl:el;’ "
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Aspect This Work Commercial Research Hospital
spec
P (ESP32) Wearables Prototypes Monitors
Parameters 3-4 vitals 1-3 vitals 2-6 vitals 5-12+ vitals
Connectivit Wi-Fi/Bluetooth Bluetooth onl Wi- Wired/Wi-Fi
Y y Fi/Bluetooth

Clinical

11‘11ca‘ Limited Extensive Variable Extensive
Validation

Key differentiators of this implementation include:

1. Cost-effectiveness: At approximately $25 per unit (including enclosure), the system represents an
80-90% cost reduction compared to specialized medical monitors while maintaining adequate
accuracy for non-critical monitoring [33, 34].

2. Dual connectivity: Unlike Bluetooth-only commercial wearables, simultaneous Wi-Fi and
Bluetooth support enables both direct smartphone pairing and independent cloud connectivity.

3. Open architecture: The system's modular design allows for sensor upgrades and customization,
addressing the inflexibility of proprietary systems noted in literature [8, 19].

4.3 Limitations and Technical Challenges
4.3.1 Motion Artifact Susceptibility

Despite implementing filtering algorithms, the system exhibited significant sensitivity to motion
artifacts, particularly affecting SpO. readings. During walking tests, SpO: accuracy dropped to 84.2%,
with frequent false alerts (12.3% false positive rate). This limitation echoes challenges documented
across loT health monitoring research [15, 26, 32] and represents a critical barrier to ambulatory
monitoring applications.

4.3.2 Scalability Constraints

Load testing revealed architectural limitations at scale. The cloud implementation began experiencing
latency increases (>5 seconds) beyond 1,000 concurrent users, and database queries slowed significantly
beyond 10,000 stored patient-days. While adequate for small clinics or home use, this restricts
deployment in large healthcare facilities without significant infrastructure upgrades [6, 14].

4.3.3 Security Implementation Gaps
Although TLS encryption was implemented for data transmission, several security vulnerabilities were
identified:
1. Device authentication: The current implementation uses simple token-based authentication
susceptible to replay attacks.
2. Data at rest: While cloud providers offer encryption, key management lacks the granularity
required for HIPAA compliance in multi-tenant scenarios [23, 35].
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3. Physical security: The prototype lacks tamper detection mechanisms, creating potential for
physical compromise in unsupervised deployments.

4.4 Clinical Relevance and Practical Implications
4.4.1 Applicability to Chronic Disease Management

The system shows particular promise for managing chronic conditions requiring continuous
monitoring but not immediate intervention. For respiratory conditions like asthma or COPD, the
combination of SpO: and heart rate monitoring provides early indicators of exacerbation, potentially
reducing emergency visits by 30-40% as suggested in similar implementations [26]. However, clinical
validation with patient populations remains necessary to establish efficacy thresholds and reduce false
alerts.
4.4.2 Impact on Healthcare Delivery Models

The low-cost, remote monitoring capability aligns with shifting healthcare paradigms toward
decentralized care. Economic analysis suggests potential cost savings of $2,500-$4,000 per patient
annually through reduced hospitalizations and clinic visits [20, 25]. Furthermore, the system enables
"hospital-at-home" models, particularly valuable for elderly or mobility-impaired patients [9, 25].

4.4.3 User Adoption Considerations

Usability testing with elderly participants (n=15, age 68+7) revealed mixed results. While the
wearable form factor was generally acceptable, 40% of participants required assistance with initial Wi-Fi
configuration. The mobile dashboard received positive feedback for clarity (4.1/5 rating), but
customization options were deemed limited by caregivers. These findings underscore the importance of
user-centered design highlighted in multiple studies [2, 9, 19].

4.5 Comparative Advantages and Trade-offs
The analysis reveals several key trade-offs inherent in loT-based health monitoring:
1. Accuracy vs. Cost: The system achieves 92-97% accuracy at 5-10% of the cost of clinical
equipment, representing an optimal point on the cost-accuracy curve for non-critical applications.
2. Connectivity vs. Power: Dual connectivity increases functionality but reduces battery life by
35% compared to Bluetooth-only implementations.
3. Real-time vs. Reliability: Optimizing for real-time transmission (1-minute intervals) increases
data freshness but reduces battery life and increases network dependency.
The ESP32 platform effectively balances these trade-offs, though not optimally for all scenarios. For
instance, battery-powered wearable applications might benefit from disabling Wi-Fi in favor of
Bluetooth Low Energy, while stationary bedside monitors could prioritize Wi-Fi for continuous
connectivity.

4.6 Recommendations for System Enhancement

Based on the analysis, several improvements are recommended:

Algorithm Enhancement: Implement adaptive filtering that adjusts to individual motion patterns and
physiological baselines, potentially improving motion artifact rejection by 40-50%.
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i.  Hybrid Connectivity Strategy: Develop intelligent protocol switching that uses Bluetooth when
mobile devices are nearby and Wi-Fi for direct cloud connectivity otherwise, optimizing both
power and reliability.

ii. Edge Computing Integration: Move basic anomaly detection to the ESP32 to reduce cloud
dependency and enable offline alerting, addressing connectivity gaps in remote areas.

iii.  Modular Sensor Architecture: Design pluggable sensor modules to facilitate customization for
different medical conditions while maintaining core electronics.

iv.  Enhanced Security Framework: Implement hardware-based secure elements for device
authentication and explore blockchain-based audit trails for regulatory compliance [23, 35].

4.7 Future Research Directions
The analysis identifies several promising research avenues:

a. Multi-modal Sensor Fusion: Combining PPG with additional parameters (ECG, respiratory
rate) through sensor fusion algorithms could improve accuracy and enable new diagnostic
capabilities [7, 27].

b. Machine Learning Integration: Implementing lightweight ML models on the ESP32 for
personalized anomaly detection represents a natural progression from threshold-based alerting
[14, 24].

c. Interoperability Standards: Developing standardized APIs for EHR integration would address
a significant adoption barrier in clinical settings [5, 20].

d. Long-term Validation Studies: Longitudinal studies with diverse patient populations are needed
to establish clinical efficacy and refine alert thresholds.

Energy Harvesting Integration: Exploring integration with piezoelectric or thermoelectric energy
harvesters could enable truly maintenance-free operation for implantable or long-term wearable
applications.

5. Conclusion

The ESP32-based IoT healthcare monitoring system successfully addresses key requirements for
affordable, continuous health monitoring. It demonstrates adequate accuracy for non-critical
applications, acceptable latency for most monitoring scenarios, and sufficient battery life for practical
wearable use. The system's primary contributions lie in its cost-effectiveness, dual connectivity, and
open architecture, which collectively lower barriers to adoption in both clinical and home settings.
However, significant challenges remain, particularly regarding motion artifact rejection, scalability
limitations, and security implementation. These limitations define the system's appropriate use cases:
chronic disease management, post-operative monitoring, elderly care, and general wellness tracking—
applications where occasional data gaps or moderate accuracy are acceptable trade-offs for accessibility
and cost. The analysis confirms that while IoT cannot replace clinical-grade monitoring for critical care,
it effectively bridges the monitoring gap between periodic clinic visits and inpatient care. As sensor
technologies advance and processing algorithms mature, similar systems will increasingly play vital
roles in preventive healthcare and chronic disease management, contributing to more proactive,
personalized, and accessible healthcare delivery worldwide.
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